Theory

Challenges

Conclusion

## **Crafting Online Experiments**

Thomas J. Leeper

Government Department London School of Economics and Political Science

> 6 February 2018 KU-Leuven #MethLab

By the end of the day, you should be able to...

**1** Explain how to analyze experiments quantitatively.

- **1** Explain how to analyze experiments quantitatively.
- 2 Explain how to design experiments that speak to relevant research questions and theories.

- 1 Explain how to analyze experiments quantitatively.
- 2 Explain how to design experiments that speak to relevant research questions and theories.
- 3 Evaluate the uses and limitations of several common survey experimental paradigms.

- 1 Explain how to analyze experiments quantitatively.
- 2 Explain how to design experiments that speak to relevant research questions and theories.
- 3 Evaluate the uses and limitations of several common survey experimental paradigms.
- 4 Identify practical issues that arise in the implementation of experiments and evaluate how to anticipate and respond to them.

Theory

Challenges

Conclusion

## Activity!

Theory

Challenges

Conclusion

#### Activity!

#### Ask you to guess a number

Theory

Challenges

Conclusion

## Activity!

- 1 Ask you to guess a number
- 2 Number off 1 and 2 across the room

Theory

Challenges

Conclusion

## Activity!

- 1 Ask you to guess a number
- Number off 1 and 2 across the room
- **3** Group 2, close your eyes

Theory

Challenges

Conclusion

## Activity!

#### Group 1

Think about whether the population of Chicago is more or less than 500,000 people. What do you think the population of Chicago is?

Theory

Challenges

Conclusion

## Activity!

- 1 Ask you to guess a number
- 2 Number off 1 and 2 across the room
- 3 Group 2, close your eyes
- 4 Group 1, close your eyes

Theory

Challenges

Conclusion

## Activity!

#### Group 2

Think about whether the population of Chicago is more or less than 10,000,000 people. What do you think the population of Chicago is?

Theory

Challenges

Conclusion

Challenges

Conclusion

#### Enter your data

- Go here: http://bit.ly/297vEdd
- Enter your guess and your group number

Theory

Challenges

Conclusion

Theory

Challenges

Conclusion

#### Results

#### True population: 2.79 million

Conclusion

#### Results

True population: 2.79 million

What did you guess? (See Responses)

#### Results

- True population: 2.79 million
- What did you guess? (See Responses)
- What's going on here?
  - An experiment!
  - Demonstrates "anchoring" heuristic

#### Results

- True population: 2.79 million
- What did you guess? (See Responses)
- What's going on here?
  - An experiment!
  - Demonstrates "anchoring" heuristic
- Experiments are easy to analyze, but only if designed and implemented well

- 1 History and Logic of Experiments
- 2 From Theory to Design
  - Translating Hypotheses into Designs
  - Assessing Quality
  - Common Paradigms and Examples
  - More Advanced Designs
- 3 Challenges and Criticisms
  - Participant Recruitment
  - Attention and Satisficing
  - Use of Covariates
- 4 Conclusion

# Who am I?

- Thomas Leeper
- Originally from Minnesota, USA
- Associate Professor in Political Behaviour at London School of Economics
- Research interests:
  - Survey experiments
  - Public opinion
  - Political psychology
- Email: t.leeper@lse.ac.uk

## Who are you?

- Where are you from?
- Have you designed a survey and/or experiment before?
- What are your research interests?

Theory

Challenges

Conclusion



## Slides for the workshop are available at:

#### http://thomasleeper.com/surveyexpcourse/ 2018-leuven.html

- 1 History and Logic of Experiments
- 2 From Theory to Design
  - Translating Hypotheses into Designs
  - Assessing Quality
  - Common Paradigms and Examples
  - More Advanced Designs
- 3 Challenges and Criticisms
  - Participant Recruitment
  - Attention and Satisficing
  - Use of Covariates
- 4 Conclusion

#### 1 History and Logic of Experiments

# 2 From Theory to Design Translating Hypotheses into Designs Assessing Quality Common Paradigms and Examples More Advanced Designs

- 3 Challenges and Criticisms
  Participant Recruitment
  Attention and Satisficing
  Use of Covariates
- 4 Conclusion

## **Experiments: History I**

Oxford English Dictionary defines "experiment" as:

- A scientific procedure undertaken to make a discovery, test a hypothesis, or demonstrate a known fact
- A course of action tentatively adopted without being sure of the outcome

## Experiments: History II

- "Experiments" have a very long history
- Major advances in design and analysis of experiments based on agricultural and later biostatistical research in the 19th century (Fisher, Neyman, Pearson, etc.)

## **Experiments: History II**

- "Experiments" have a very long history
- Major advances in design and analysis of experiments based on agricultural and later biostatistical research in the 19th century (Fisher, Neyman, Pearson, etc.)
- Multiple origins in the social sciences

## **Experiments: History II**

- "Experiments" have a very long history
- Major advances in design and analysis of experiments based on agricultural and later biostatistical research in the 19th century (Fisher, Neyman, Pearson, etc.)
- Multiple origins in the social sciences
  - First randomized experiment by Peirce and Jastrow (1884)
  - Gosnell (1924)
  - LaLonde (1986)
  - Gerber and Green (2000)

## **Experiments: History III**

Rise of surveys in the behavioral revolution

- Survey research not heavily experimental because interviewing was mostly paper-based
- "Split ballots" (e.g., Schuman & Presser; Bishop)

## **Experiments: History III**

- Rise of surveys in the behavioral revolution
  - Survey research not heavily experimental because interviewing was mostly paper-based
  - "Split ballots" (e.g., Schuman & Presser; Bishop)
- 1983: Merrill Shanks and the Berkeley Survey Research Center develop CATI

## Experiments: History III

Rise of surveys in the behavioral revolution

- Survey research not heavily experimental because interviewing was mostly paper-based
- Split ballots" (e.g., Schuman & Presser; Bishop)
- 1983: Merrill Shanks and the Berkeley Survey Research Center develop CATI
- Mid-1980s: Paul Sniderman & Tom Piazza performed the first modern survey experiment<sup>1</sup>

Then: the "first multi-investigator"

Later: Skip Lupia and Diana Mutz created TESS

<sup>&</sup>lt;sup>1</sup>Sniderman, Paul M., and Thomas Piazza. 1993. *The Scar of Race*. Cambridge, MA: Harvard University Press.

# TESS

- Time-Sharing Experiments for the Social Sciences
- Multi-disciplinary initiative that provides infrastructure for survey experiments on nationally representative samples of the United States population
- Great resource for survey experimental materials, designs, and data
- Funded by the U.S. National Science Foundation
- Anyone anywhere in the world can apply
- See also: LISS, Bergen's Citizen Panel, Gothenburg's Citizen Panel

## The First Survey Experiment

Hadley Cantril (1940) asks 3000 Americans either:



## The First Survey Experiment

Hadley Cantril (1940) asks 3000 Americans either:

Do you think the U.S. should do more than it is now doing to help England and France?

- Yes
- No
Hadley Cantril (1940) asks 3000 Americans either:

Do you think the U.S. should do more than it is now doing to help England and France?

YesNo

Do you think the U.S. should do more than it is now doing to help England and France in their fight against Hitler? Yes

No

Hadley Cantril (1940) asks 3000 Americans either:

Do you think the U.S. should do more than it is now doing to help England and France?

Yes: 13%No

Do you think the U.S. should do more than it is now doing to help England and France in their fight against Hitler? Yes

No

Hadley Cantril (1940) asks 3000 Americans either:

Do you think the U.S. should do more than it is now doing to help England and France?

Yes: 13%No

Do you think the U.S. should do more than it is now doing to help England and France in their fight against Hitler? Yes: 22%

No

Hadley Cantril (1940) asks 3000 Americans either:

Do you think the U.S. should do more than it is now doing to help England and France?

Yes: 13%No

Do you think the U.S. should do more than it is now doing to help England and France in their fight against Hitler?

No

I

The "Hitler effect" was 22% - 13% = 9%

# **Definitions** I

A randomized experiment is:

The observation of units after, and possibly before, a randomly assigned intervention in a controlled setting, which tests one or more precise causal expectations

# **Definitions** I

A randomized experiment is:

The observation of units after, and possibly before, a randomly assigned intervention in a controlled setting, which tests one or more precise causal expectations

If we manipulate the thing we want to know the effect of (X), and control (i.e., hold constant) everything we do not want to know the effect of (Z), the only thing that can affect the outcome (Y) is X.

Conclusion

- A survey experiment is just an experiment that occurs in a survey context
  - As opposed to in the field or in a laboratory

- A survey experiment is just an experiment that occurs in a survey context
  - As opposed to in the field or in a laboratory
- Can be in any mode (face-to-face, CATI, IVR, CASI, etc.)

- A survey experiment is just an experiment that occurs in a survey context
  - As opposed to in the field or in a laboratory
- Can be in any mode (face-to-face, CATI, IVR, CASI, etc.)
- May or may not involve a representative population
  - Mutz (2011): "population-based survey experiments"

Conclusion

Conclusion

## **Definitions II**

#### Unit: A physical object at a particular point in time

Conclusion

# **Definitions II**

**Treatment**: An intervention, whose effect(s) we wish to assess relative to some other (non-)intervention

Synonyms: manipulation, intervention, factor, condition, cell

Conclusion

## **Definitions II**

#### Outcome: The variable we are trying to explain

Conclusion

# **Definitions II**

**Potential outcomes**: The outcome value for each unit that we *would observe* if that unit received each treatment

Multiple potential outcomes for each unit, but we only observe one of them

Conclusion

## **Definitions II**

**Causal effect**: The comparisons between the unit-level potential outcomes under each intervention

This is what we want to know!

Theory

Challenges

Conclusion

## **Definitions II**

# Average causal effect: Difference in mean outcomes between treatment groups

This is almost what we want to know!

Theory

Challenges

Conclusion

#### Example

Challenges

Conclusion

#### Example

#### Unit: Americans in 1940

#### **Unit**: Americans in 1940 **Outcome**: Support for military intervention

**Unit**: Americans in 1940 **Outcome**: Support for military intervention **Treatment**: Mentioning Hitler versus not

**Unit**: Americans in 1940 **Outcome**: Support for military intervention **Treatment**: Mentioning Hitler versus not **Potential outcomes**:

- Support in "Hitler" condition
- Support in control condition

**Unit**: Americans in 1940 **Outcome**: Support for military intervention **Treatment**: Mentioning Hitler versus not **Potential outcomes**:

- Support in "Hitler" condition
- Support in control condition

**Causal effect**: Difference in support between the two question wordings for each respondent

**Unit**: Americans in 1940 **Outcome**: Support for military intervention **Treatment**: Mentioning Hitler versus not **Potential outcomes**:

- Support in "Hitler" condition
- Support in control condition

**Causal effect**: Difference in support between the two question wordings for each respondent

Individual treatment effect not observable!

**Unit**: Americans in 1940 **Outcome**: Support for military intervention **Treatment**: Mentioning Hitler versus not **Potential outcomes**:

- Support in "Hitler" condition
- Support in control condition

**Causal effect**: Difference in support between the two question wordings for each respondent

- Individual treatment effect not observable!
- Average effect (ATE) is the mean-difference

Theory

Challenges

Conclusion

## Questions?

Conclusion

## Why are experiments useful?

Conclusion

## Why are experiments useful?

#### Causal inference!

Conclusion

# Addressing Confounding

In observational research...

In observational research...

Correlate a "putative" cause (X) and an outcome (Y), where X temporally precedes Y

In observational research...

- Correlate a "putative" cause (X) and an outcome (Y), where X temporally precedes Y
- Identify all possible confounds (Z)

In observational research...

- Correlate a "putative" cause (X) and an outcome (Y), where X temporally precedes Y
- Identify all possible confounds (Z)
- 3 "Condition" on all confounds
  - Calculate correlation between X and Y at each combination of levels of Z

In observational research...

- Correlate a "putative" cause (X) and an outcome (Y), where X temporally precedes Y
- Identify all possible confounds (Z)
- 3 "Condition" on all confounds

Calculate correlation between X and Y at each combination of levels of Z

<sup>4</sup> Basically: 
$$Y = \beta_0 + \beta_1 X + \beta_{2-k} \mathbf{Z} + \epsilon$$






Conclusion

**I** Causal inferences from *design* not *analysis* 

- **I** Causal inferences from *design* not *analysis*
- Solves both temporal ordering and confounding
  - Treatment (X) applied by researcher before outcome (Y)
  - Randomization eliminates confounding (Z)
  - We don't need to "control" for anything

- **I** Causal inferences from *design* not *analysis*
- Solves both temporal ordering and confounding
  - Treatment (X) applied by researcher before outcome (Y)
  - Randomization eliminates confounding (Z)
  - We don't need to "control" for anything
- 3 Basically:  $Y = \beta_0 + \beta_1 X + \epsilon$

- **I** Causal inferences from *design* not *analysis*
- Solves both temporal ordering and confounding
  - Treatment (X) applied by researcher before outcome (Y)
  - Randomization eliminates confounding (Z)
  - We don't need to "control" for anything
- **3** Basically:  $Y = \beta_0 + \beta_1 X + \epsilon$
- Thus experiments are a "gold standard"

Challenges

Conclusion

#### Mill's Method of Difference

If an instance in which the phenomenon under investigation occurs, and an instance in which it does not occur, have every circumstance save one in common, that one occurring only in the former; the circumstance in which alone the two instances differ, is the effect, or cause, or an necessary part of the cause, of the phenomenon.

Challenges

Conclusion

#### Mill's Method of Difference

If an instance in which the phenomenon under investigation occurs, and an instance in which it does not occur, **have every circumstance save one in common**, that one occurring only in the former; **the circumstance in which alone the two instances differ, is the** effect, or **cause**, or an necessary part of the cause, **of the phenomenon**. History/Logic

Theory

Challenges

Conclusion

# Questions?

#### Neyman-Rubin Potential Outcomes Framework

If we are interested in some outcome Y, then for every unit *i*, there are numerous "potential outcomes" Y\* only one of which is visible in a given reality. Comparisons of (partially unobservable) potential outcomes indicate causality.

Conclusion

#### Neyman-Rubin Potential Outcomes Framework

Concisely, we typically discuss two potential outcomes:

- Y<sub>0i</sub>, the *potential* outcome *realized* if X<sub>i</sub> = 0 (b/c
  D<sub>i</sub> = 0, assigned to control)
- Y<sub>1i</sub>, the *potential* outcome *realized* if X<sub>i</sub> = 1 (b/c D<sub>i</sub> = 1, assigned to treatment)

Each unit has multiple *potential* outcomes, but we only observe one of them, randomly

- Each unit has multiple *potential* outcomes, but we only observe one of them, randomly
- In this sense, we are sampling potential outcomes from each unit's population of potential outcomes

| low | high                    |
|-----|-------------------------|
| ?   | ?                       |
| ?   | ?                       |
| ?   | ?                       |
| ?   | ?                       |
|     | low<br>?<br>?<br>?<br>? |

- Each unit has multiple *potential* outcomes, but we only observe one of them, randomly
- In this sense, we are sampling potential outcomes from each unit's population of potential outcomes

| unit | low | high | control |  |
|------|-----|------|---------|--|
| 1    | ?   | ?    | ?       |  |
| 2    | ?   | ?    | ?       |  |
| 3    | ?   | ?    | ?       |  |
| 4    | ?   | ?    | ?       |  |

- Each unit has multiple *potential* outcomes, but we only observe one of them, randomly
- In this sense, we are sampling potential outcomes from each unit's population of potential outcomes

| unit | low | high | control | etc. |
|------|-----|------|---------|------|
| 1    | ?   | ?    | ?       |      |
| 2    | ?   | ?    | ?       |      |
| 3    | ?   | ?    | ?       |      |
| 4    | ?   | ?    | ?       |      |

Conclusion

## **Experimental Inference II**

We cannot see individual-level causal effects

- We cannot see individual-level causal effects
- We can see *average causal effects* 
  - Ex.: Average difference in military support among those thinking of Hitler versus not

- We cannot see individual-level causal effects
- We can see *average causal effects* 
  - Ex.: Average difference in military support among those thinking of Hitler versus not
- We want to know:  $TE_i = Y_{1i} Y_{0i}$

We want to know:  $TE_i = Y_{1i} - Y_{0i}$  for every *i* in the population

- We want to know:  $TE_i = Y_{1i} Y_{0i}$  for every *i* in the population
- We can average:  $E[TE_i] = E[Y_{1i} - Y_{0i}] = E[Y_{1i}] - E[Y_{0i}]$

- We want to know:  $TE_i = Y_{1i} Y_{0i}$  for every *i* in the population
- We can average:  $E[TE_i] = E[Y_{1i} - Y_{0i}] = E[Y_{1i}] - E[Y_{0i}]$
- But we still only see one potential outcome for each unit:

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$

- We want to know:  $TE_i = Y_{1i} Y_{0i}$  for every *i* in the population
- We can average:  $E[TE_i] = E[Y_{1i} - Y_{0i}] = E[Y_{1i}] - E[Y_{0i}]$
- But we still only see one potential outcome for each unit:

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$

Is this what we want to know?

What we want and what we have:

$$ATE = E[Y_{1i}] - E[Y_{0i}]$$
(1)

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$
 (2)

What we want and what we have:

$$ATE = E[Y_{1i}] - E[Y_{0i}]$$
(1)

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$
 (2)

Are the following statements true?

$$E[Y_{1i}] = E[Y_{1i}|X = 1]$$
$$E[Y_{0i}] = E[Y_{0i}|X = 0]$$

What we want and what we have:

$$ATE = E[Y_{1i}] - E[Y_{0i}]$$
(1)

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$
 (2)

Are the following statements true?

$$E[Y_{1i}] = E[Y_{1i}|X = 1]$$
$$E[Y_{0i}] = E[Y_{0i}|X = 0]$$

■ Not in general!

Only true when both of the following hold:

$$E[Y_{1i}] = E[Y_{1i}|X=1] = E[Y_{1i}|X=0]$$
(3)

$$E[Y_{0i}] = E[Y_{0i}|X=1] = E[Y_{0i}|X=0]$$
(4)

- In that case, potential outcomes are *independent* of treatment assignment
- If true (e.g., due to randomization of *X*), then:

$$ATE_{naive} = E[Y_{1i}|X = 1] - E[Y_{0i}|X = 0]$$
(5)  
=  $E[Y_{1i}] - E[Y_{0i}]$   
=  $ATE$ 

This holds in experiments because of a physical process of randomization<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Random means "known probability of treatment" not "haphazard".

- This holds in experiments because of a physical process of randomization<sup>2</sup>
- Units differ only in side of coin that was up
  X<sub>i</sub> = 1 only because D<sub>i</sub> = 1

<sup>&</sup>lt;sup>2</sup>Random means "known probability of treatment" not "haphazard".

- This holds in experiments because of a physical process of randomization<sup>2</sup>
- Units differ only in side of coin that was up
  X<sub>i</sub> = 1 only because D<sub>i</sub> = 1
- Implications:
  - Covariate balance
  - Potential outcomes balanced and independent of treatment assignment
  - No confounding (selection bias)

<sup>&</sup>lt;sup>2</sup>Random means "known probability of treatment" not "haphazard".





History/Logic

Theory

Challenges

Conclusion

# Questions?

### **Experimental Analysis I**

- The statistic of interest in an experiment is the sample average treatment effect (SATE)
- If our sample is *representative*, then this provides an estimate of the population average treatment (PATE)
  - Design-based random sampling
  - Model-based re-weighting

# **Experimental Analysis I**

- The statistic of interest in an experiment is the sample average treatment effect (SATE)
- If our sample is *representative*, then this provides an estimate of the population average treatment (PATE)
  - Design-based random sampling
  - Model-based re-weighting
- This boils down to being a mean-difference between two groups:

$$SATE = \frac{1}{n_1} \sum Y_{1i} - \frac{1}{n_0} \sum Y_{0i}$$
 (5)

# **Tidy Experimental Data**

An experimental data structure looks like:

| treatment | outcome                                                |
|-----------|--------------------------------------------------------|
| 0         | 13                                                     |
| 0         | 6                                                      |
| 0         | 4                                                      |
| 0         | 5                                                      |
| 1         | 3                                                      |
| 1         | 1                                                      |
| 1         | 10                                                     |
| 1         | 9                                                      |
|           | treatment<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1 |

## **Tidy Experimental Data**

Sometimes it looks like this instead, which is bad:

| unit | treatment | outcome0 | outcome1 |
|------|-----------|----------|----------|
| 1    | 0         | 13       | NA       |
| 2    | 0         | 6        | NA       |
| 3    | 0         | 4        | NA       |
| 4    | 0         | 5        | NA       |
| 5    | 1         | NA       | 3        |
| 6    | 1         | NA       | 1        |
| 7    | 1         | NA       | 10       |
| 8    | 1         | NA       | 9        |

# **Tidy Experimental Data**

An experimental data structure looks like:

| treatment | outcome                                                |
|-----------|--------------------------------------------------------|
| 0         | 13                                                     |
| 0         | 6                                                      |
| 0         | 4                                                      |
| 0         | 5                                                      |
| 1         | 3                                                      |
| 1         | 1                                                      |
| 1         | 10                                                     |
| 1         | 9                                                      |
|           | treatment<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1 |
Conclusion

# **Computation of Effects I**

- In practice we often estimate SATE using t-tests, ANOVA, or OLS regression
- These are all basically equivalent

# **Computation of Effects I**

- In practice we often estimate SATE using t-tests, ANOVA, or OLS regression
- These are all basically equivalent
- Reasons to choose one procedure over another:

Disciplinary norms

# **Computation of Effects I**

- In practice we often estimate SATE using t-tests, ANOVA, or OLS regression
- These are all basically equivalent
- Reasons to choose one procedure over another:
  - Disciplinary norms
  - Ease of interpretation

# Computation of Effects I

- In practice we often estimate SATE using t-tests, ANOVA, or OLS regression
- These are all basically equivalent
- Reasons to choose one procedure over another:
  - Disciplinary norms
  - Ease of interpretation
  - Flexibility for >2 treatment conditions

# **Computation of Effects II**

R:

```
t.test(outcome ~ treatment, data = data)
lm(outcome ~ factor(treatment), data = data)
```

Stata:

```
ttest outcome, by(treatment)
reg outcome i.treatment
```

Theory

Challenges

Conclusion

# Questions?

# **Experimental Analysis II**

- We don't just care about the size of the SATE. We also want to know whether it is significantly different from zero (i.e., different from no effect/difference)
- Thus we need to estimate the *variance* of the SATE
- The variance is influenced by:
  - Total sample size
  - Element variance of the outcome, Y
  - Relative size of each treatment group
  - (Some other factors)

# **Experimental Analysis III**

Formula for the variance of the SATE is:  

$$\widehat{Var}(SATE) = \frac{\widehat{Var}(Y_0)}{n_0} + \frac{\widehat{Var}(Y_1)}{n_1}$$

We often express this as the standard error of the estimate:

$$\widehat{SE}_{SATE} = \sqrt{\frac{\widehat{Var}(Y_0)}{n_0} + \frac{\widehat{Var}(Y_1)}{n_1}}$$

## Intuition about Variance

- $\blacksquare Bigger sample \rightarrow smaller SEs$
- Smaller variance  $\rightarrow$  smaller SEs
  - Efficient use of sample size:
    - When treatment group variances equal, equal sample sizes are most efficient
    - When variances differ, sample units are better allocated to the group with higher variance in Y

# **Statistical Power**

- Power analysis is used to determine sample size before conducting an experiment
- Type I and Type II Errors

$$\begin{array}{ccc} H_0 \text{ False} & H_0 \text{ True} \\ (|ATE| > 0) & (ATE = 0) \end{array}$$
Reject  $H_0$  **True positive** Type I Error  
Accept  $H_0$  Type II Error True zero

True positive rate (1 - κ) is power
 False positive rate is the significance threshold (α)

# **Doing a Power Analysis**

- $\blacksquare$   $\mu$ , Treatment group mean outcomes
- *N*, Sample size
- $\sigma$ , Outcome variance
- $\blacksquare \alpha$  Statistical significance threshold
- $\phi$ , a sampling distribution

Power = 
$$\phi\left(\frac{|\mu_1-\mu_0|\sqrt{N}}{2\sigma} - \phi^{-1}\left(1-\frac{\alpha}{2}\right)\right)$$

Challenges

## Intuition about Power

Minimum detectable effect is the smallest effect we could detect given sample size, "true" ATE, variance of outcome measure, power  $(1 - \kappa)$ , and  $\alpha$ .

Minimum detectable effect is the smallest effect we could detect given sample size, "true" ATE, variance of outcome measure, power  $(1 - \kappa)$ , and  $\alpha$ .

In essence: some non-zero effect sizes are not detectable by a study of a given sample size.

Minimum detectable effect is the smallest effect we could detect given sample size, "true" ATE, variance of outcome measure, power  $(1 - \kappa)$ , and  $\alpha$ .

In essence: some non-zero effect sizes are not detectable by a study of a given sample size.

In underpowered study, we will be unlikely to detect true small effects. And most effects are small!  $^{\rm 3}$ 

<sup>&</sup>lt;sup>3</sup>Gelman, A. and Weakliem, D. 2009. "Of Beauty, Sex and Power." American Scientist 97(4): 310–16

- It can help to think in terms of "standardized effect sizes"
- Intuition: How large is the effect in standard deviations of the outcome?
  - Know if effects are large or small
  - Compare effects across studies

- It can help to think in terms of "standardized effect sizes"
- Intuition: How large is the effect in standard deviations of the outcome?
  - Know if effects are large or small
  - Compare effects across studies

Cohen's *d*:  

$$d = \frac{\bar{x}_1 - \bar{x}_0}{s}$$
, where  $s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_0 - 1)s_0^2}{n_1 + n_0 - 2}}$ 

- It can help to think in terms of "standardized effect sizes"
- Intuition: How large is the effect in standard deviations of the outcome?
  - Know if effects are large or small
  - Compare effects across studies

Cohen's *d*:  

$$d = \frac{\bar{x}_1 - \bar{x}_0}{s}$$
, where  $s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_0 - 1)s_0^2}{n_1 + n_0 - 2}}$ 

Small: 0.2; Medium: 0.5; Large: 0.8



)

## Power analysis in R

```
power.t.test(
    # sample size (leave blank!)
    n = ,
```

```
# minimum detectable effect size
delta = 0.4, sd = 1,
```

```
# alpha and power (1-kappa)
sig.level = 0.05, power = 0.8,
```

```
# two-tailed vs. one-tailed test
alternative = "two.sided"
```

Conclusion

### Power analysis in Stata

```
power twomeans 0, diff(0.2)
```

```
// for multiple values of
forvalues i = 0.1 (0.1) 1.0 {
    power twomeans 0, diff('i')
}
```

// using raw effect sizes and standard deviations
power twomeans 0 0.5, sd1(.5) sd2(.7)

```
// adjusting alpha or power
power twomeans 0, diff(0.2) alpha(0.10) power(0.7)
```

Conclusion

# Increasing/Decreasing Power

#### **Increases** Power

- Bigger sample
- Precise measures
- Covariates?

#### **Decreases** Power

- Attrition
- Noncompliance
  - Clustering

 $\mathsf{History}/\mathsf{Logic}$ 

Theory

Challenges

Conclusion

# Factorial Designs

- The two-condition experiment is a stylized ideal
- An experiment can have any number of conditions
  - Up to the limits of sample size
  - More than 8–10 conditions is typically unwieldy
- Three "flavors":
  - Multiple conditions in a single factor
  - Multiple fully crossed factors
  - Partially crossed ("fractional factorial") designs
- Regression methods provide a generalizable tool for causal inference in such designs

Conclusion







### **Example**<sup>4</sup>

- How close do you feel to your ethnic or racial group?
- Some people have said that taxes need to be raised to take care of pressing national needs. How willing would you be to have your taxes raised to improve education in public schools?

<sup>&</sup>lt;sup>4</sup>Transue. 2007. "Identity Salience, Identity Acceptance, and Racial Policy Attitudes: American National Identity as a Uniting Force." *American Journal of Political Science* 51(1): 78–91.

### **Example**<sup>4</sup>

How close do you feel to other Americans?

Some people have said that taxes need to be raised to take care of pressing national needs. How willing would you be to have your taxes raised to improve education in public schools?

<sup>&</sup>lt;sup>4</sup>Transue. 2007. "Identity Salience, Identity Acceptance, and Racial Policy Attitudes: American National Identity as a Uniting Force." *American Journal of Political Science* 51(1): 78–91.

### **Example**<sup>4</sup>

- How close do you feel to your ethnic or racial group?
- Some people have said that taxes need to be raised to take care of pressing national needs. How willing would you be to have your taxes raised to improve educational opportunities for minorities?

<sup>&</sup>lt;sup>4</sup>Transue. 2007. "Identity Salience, Identity Acceptance, and Racial Policy Attitudes: American National Identity as a Uniting Force." *American Journal of Political Science* 51(1): 78–91.

### **Example**<sup>4</sup>

• How close do you feel to other Americans?

Some people have said that taxes need to be raised to take care of pressing national needs. How willing would you be to have your taxes raised to improve educational opportunities for minorities?

<sup>&</sup>lt;sup>4</sup>Transue. 2007. "Identity Salience, Identity Acceptance, and Racial Policy Attitudes: American National Identity as a Uniting Force." *American Journal of Political Science* 51(1): 78–91.

Challenges

Conclusion

# 2x2 Factorial Design

Condition

| Educ. | for | Minorities | $Y_1$ |
|-------|-----|------------|-------|
| Schoo | ls  |            | $Y_0$ |

Challenges

Conclusion

# 2x2 Factorial Design

| Condition                       | Americans            | Own Race                                       |
|---------------------------------|----------------------|------------------------------------------------|
| Educ. for Minorities<br>Schools | $Y_{1,0} \\ Y_{0,0}$ | $egin{array}{c} Y_{1,1} \ Y_{0,1} \end{array}$ |

### Two ways to *parameterize* this

Dummy variable regression (i.e., treatment-control CATEs):  $Y = \beta_0 + \beta_1 X_{0,1} + \beta_2 X_{1,0} + \beta_3 X_{1,1} + \epsilon$ 

Interaction effects (i.e., treatment-treatment CATEs):  $Y = \beta_0 + \beta_1 X 1_1 + \beta_2 X 2_1 + \beta_3 X 1_1 * X 2_1 + \epsilon$ 

Use margins to extract marginal effects

Challenges

# Considerations

 Factorial designs can quickly become unwieldy and expensive -

### Probably obvious, but...

| Factors | Conditions per factor | Total Conditions | п    |
|---------|-----------------------|------------------|------|
| 1       | 2                     | 2                | 400  |
| 1       | 3                     | 3                | 600  |
| 1       | 4                     | 4                | 800  |
| 2       | 2                     | 4                | 800  |
| 2       | 3                     | 6                | 1200 |
| 2       | 4                     | 8                | 1600 |
| 3       | 3                     | 9                | 1800 |
| 3       | 4                     | 12               | 2400 |
| 4       | 4                     | 16               | 3200 |

Assumes power to detect a relatively small effect, but no consideration of multiple comparisons.

Challenges

# Considerations

 Factorial designs can quickly become unwieldy and expensive

# Considerations

- Factorial designs can quickly become unwieldy and expensive
- Need to consider what CATEs are of theoretical interest
  - Treatment–control, pairwise
  - Treatment-treatment, pairwise
  - Marginal effects, averaging across other factors
  - Comparison of merged conditions
History/Logic

Theory

Challenges

Conclusion

### Questions?

 $\mathsf{History}/\mathsf{Logic}$ 

Theory

Challenges

Conclusion

#### 1 History and Logic of Experiments

#### 2 From Theory to Design

- Translating Hypotheses into Designs
- Assessing Quality
- Common Paradigms and Examples
- More Advanced Designs
- Challenges and Criticisms
   Participant Recruitment
   Attention and Satisficing
   Use of Covariates
- 4 Conclusion

#### 1 History and Logic of Experiments

- 2 From Theory to Design
   Translating Hypotheses into Designs
   Assessing Quality
   Common Paradigms and Examples
   More Advanced Designs
- Challenges and Criticisms
   Participant Recruitment
   Attention and Satisficing
   Use of Covariates
- 4 Conclusion

### From Theory to Design

- From theory, we derive testable hypotheses
  - Hypotheses are expectations about differences in outcomes across levels of a putatively causal variable
- Hypothesis must be testable by an SATE (H<sub>0</sub> = 0)
- Manipulations are developed to create variation in that causal variable

#### **Example: News Framing**

- Theory: Presentation of news affects opinion
- Hypotheses:
  - News emphasizing free speech increases support for a hate group rally
  - News emphasizing public safety decreases support for a hate group rally
- Manipulation:
  - Control group: no information
  - Free speech group: article emphasizing rights
  - Public safety group: article emphasizing safety

#### Example: Partisan Identity

- Theory: Strength of partisan identity affects tendency to accept party position
- Hypotheses:
  - Strong partisans are more likely to accept their party's position on an issue
- Manipulation:
  - Control group: no manipulation
  - "Univalent" condition
  - "Ambivalent" condition

# Univalent

These days, Democrats and Republicans differ from one another considerably. The two groups seem to be growing further and further apart, not only in terms of their opinions but also their lifestyles. Earlier in the survey, you said you tend to identify as a *Democrat/ Republican*. Please take a few minutes to think about what you like about *Democrats*/ *Republicans* compared to the *Republicans*/ *Democrats.* Think of 2 to 3 things you especially like best about **your party**. Then think of 2 to 3 things you especially dislike about **the other party**. Now please write those thoughts in the space below.

### Ambivalent

These days, Democrats and Republicans differ from one another considerably. The two groups seem to be growing further and further apart, not only in terms of their opinions but also their lifestyles. Earlier in the survey, you said you tend to identify as a *Democrat/ Republican*. Please take a few minutes to think about what you like about *Democrats*/ *Republicans* compared to the *Republicans*/ *Democrats.* Think of 2 to 3 things you especially like best about **the other party**. Then think of 2 to 3 things you especially dislike about **your party**. Now please write those thoughts in the space below.

 Experimental "factors" are expressions of hypotheses as randomized groups

- Experimental "factors" are expressions of hypotheses as randomized groups
- What stimulus each group receives depends on hypotheses

- Experimental "factors" are expressions of hypotheses as randomized groups
- What stimulus each group receives depends on hypotheses
  - Three ways hypotheses lead to stimuli:
    - presence/absence
    - levels/doses
    - qualitative variations

#### Ex.: Presence/Absence

- Theory: Negative campaigning reduces support for the party described negatively.
- Hypothesis: Exposure to a negative advertisement criticizing a party reduces support for that party.
- Manipulation:
  - Control group receives no advertisement.
  - Treatment group watches a video containing a negative ad describing a party.

#### Ex.: Levels/doses

- Theory: Negative campaigning reduces support for the party described negatively.
- Hypothesis: Exposure to higher levels of negative advertising criticizing a party reduces support for that party.
- Manipulation:
  - Control group receives no advertisement.
  - Treatment group 1 watches a video containing 1 negative ad describing a party.
  - Treatment group 2 watches a video containing 2 negative ads describing a party.
  - Treatment group 3 watches a video containing 3 negative ads describing a party.
    - etc.

#### Ex.: Qualitative variation

- Theory: Negative campaigning reduces support for the party described negatively.
- Hypothesis: Exposure to a negative advertisement criticizing a party reduces support for that party, while a positive advertisement has no effect.
- Manipulation:
  - Control group receives no advertisement.
  - Negative treatment group watches a video containing a negative ad describing a party.
  - Positive treatment group watches a video containing a positive ad describing a party.

History/Logic

Theory

Challenges

Conclusion

### Questions?

#### 1 History and Logic of Experiments

# 2 From Theory to Design Translating Hypotheses into Designs Assessing Quality Common Paradigms and Examples More Advanced Designs

- 3 Challenges and Criticisms
  Participant Recruitment
  Attention and Satisficing
  Use of Covariates
- 4 Conclusion

History/Logic

Challenges

Conclusion

# Activity!

- How do we know if an experiment is any good?
- Talk with a partner for about 3 minutes
- Try to develop some criteria that allow you to evaluate "what makes for a good experiment?"

### Some possible criteria

- Significant results
- Face validity
- Coherent for respondents
- Non-obvious to respondents
- Simple

. . . .

- Indirect/unobtrusive
- Validated by prior work
- Innovative/creative

History/Logic

Theory

Challenges

Conclusion

The best criterion for evaluating the quality of an experiment is whether it manipulated the intended independent variable and controlled everything else by design. History/Logic

Theory

Challenges

Conclusion

The best criterion for evaluating the quality of an experiment is whether it manipulated the intended independent variable and controlled everything else by design.

-Thomas J. Leeper (5 February 2018)

Outcomes are affected consistent with theory

- Outcomes are affected consistent with theory
- Before the study using *pilot testing* (or *pretesting*)

- Outcomes are affected consistent with theory
- Before the study using *pilot testing* (or *pretesting*)
- During the study, using *manipulation checks*

- Outcomes are affected consistent with theory
- Before the study using *pilot testing* (or *pretesting*)
- During the study, using *manipulation checks*
- During the study, using *placebos*

- Outcomes are affected consistent with theory
- Before the study using *pilot testing* (or *pretesting*)
- During the study, using *manipulation checks*
- During the study, using *placebos*
- During the study, using *non-equivalent outcomes*

### I. Outcomes Affected

- Follows a circular logic!
- Doesn't tell us anything if we hypothesize null effects

# II. Pilot Testing

- Goal: establish construct validity of manipulation
- Assess whether a set of possible manipulations affect a measure of the *independent* variable

# II. Pilot Testing

- Goal: establish construct validity of manipulation
- Assess whether a set of possible manipulations affect a measure of the *independent* variable
- Example:
  - Goal: Manipulate the "strength" of an argument
  - Write several arguments
  - Ask pilot test respondents to report how strong each one was

# III. Manipulation Checks

- Manipulation checks are items added post-treatment, post-outcome that assess whether the *independent* variable was affected by treatment
- We typically talk about manipulations as directly setting the value of X, but in practice we are typically manipulating something *that we think* strongly modifies X

# III. Manipulation Checks

- Manipulation checks are items added post-treatment, post-outcome that assess whether the *independent* variable was affected by treatment
- We typically talk about manipulations as directly setting the value of X, but in practice we are typically manipulating something that we think strongly modifies X
- Example: information manipulations aim to modify knowledge or beliefs, but are necessarily imperfect at doing so

Theory

Challenges

Conclusion

#### Manipulation check example<sup>5</sup>

- **I** Treatment 1: Supply Information
- 2 Manipulation check 1: measure beliefs
- <sup>3</sup> Treatment 2: Prime a set of considerations
- <sup>4</sup> Outcome: Measure opinion
- Manipulation check 2: measure dimension salience

<sup>&</sup>lt;sup>5</sup>Leeper & Slothuus. n.d. "Can Citizens Be Framed?" Available from: http://thomasleeper.com/research.html.

Challenges

Conclusion

#### **Some Best Practices**

Theory

Challenges

Conclusion

#### **Some Best Practices**

# Manipulation checks should be innocuous Shouldn't modify independent variable

Shouldn't modify outcome variable
Challenges

Conclusion

#### **Some Best Practices**

Manipulation checks should be innocuous
 Shouldn't modify independent variable
 Shouldn't modify outcome variable
 Generally, measure post-outcome

#### Some Best Practices

- Manipulation checks should be innocuous
   Shouldn't modify independent variable
  - Shouldn't modify outcome variable
- Generally, measure post-outcome
- Measure both what you wanted to manipulate and what you didn't want to manipulate
  - Most treatments are compound!

# IV. Placebos

 Include an experimental condition that *does not* manipulate the variable of interest (but might affect the outcome)

# **IV.** Placebos

 Include an experimental condition that *does not* manipulate the variable of interest (but might affect the outcome)

# Example:

- Study whether risk-related arguments about climate change increase support for a climate change policy
- Placebo condition: control article with risk-related arguments about non-environmental issue (e.g., terrorism)

# V. Non-equivalent outcomes

Measures an outcome that should not be affected by independent variable

# V. Non-equivalent outcomes

- Measures an outcome that should not be affected by independent variable
- Example:
  - Assess effect of some treatment on attitudes toward group A
  - Focal outcome: attitudes toward group A
  - Non-equivalent outcome: attitudes toward group B

Conclusion

#### Aside: Demand Characteristics

 "Demand characteristics" are features of experiments that (unintentionally) imply the purpose of the study and thereby change respondents' behavior (to be consistent with theory)

<sup>&</sup>lt;sup>6</sup>But, consider the ethics of not doing so (more Friday)

Conclusion

#### Aside: Demand Characteristics

 "Demand characteristics" are features of experiments that (unintentionally) imply the purpose of the study and thereby change respondents' behavior (to be consistent with theory)

Implications:

- Design experimental treatments that are non-obvious
- Do not disclose the purpose of the study up front<sup>6</sup>

<sup>&</sup>lt;sup>6</sup>But, consider the ethics of not doing so (more Friday)

# 1 History and Logic of Experiments

## 2 From Theory to Design

- Translating Hypotheses into DesignsAssessing Quality
- Common Paradigms and ExamplesMore Advanced Designs
- Challenges and Criticisms
   Participant Recruitment
   Attention and Satisficing
   Use of Covariates
- 4 Conclusion

# **Question Wording Designs**

- Simplest paradigm for presence/absence or qualitative variation
- Manipulation operationalizes this by asking two different questions
- Outcome is the answer to the question
- Example: Schuldt et al. "'Global Warming' or 'Climate Change'? Whether the Planet is Warming Depends on Question Wording."

You may have heard about the idea that the world's temperature may have been **going up** over the past 100 years, a phenomenon sometimes called **global warming**. What is your personal opinion regarding whether or not this has been happening?

- Definitely has not been happening
- Probably has not been happening
- Unsure, but leaning toward it has not been happening
- Not sure either way
- Unsure, but leaning toward it has been happening
- Probably has been happening
- Definitely has been happening

You may have heard about the idea that the world's temperature may have been **changing** over the past 100 years, a phenomenon sometimes called **climate change**. What is your personal opinion regarding whether or not this has been happening?

- Definitely has not been happening
- Probably has not been happening
- Unsure, but leaning toward it has not been happening
- Not sure either way
- Unsure, but leaning toward it has been happening
- Probably has been happening
- Definitely has been happening

Challenges

Conclusion

## Another framing example<sup>7</sup>

Today, tests are being developed that make it possible to detect serious genetic defects **before a baby is born**. But so far, it is impossible either to treat or to correct most of them. If (you/your partner) were pregnant, would you want (her) to have a test to find out if the **baby** has any serious genetic defects? (Yes/No)

Suppose a test shows the **baby** has a serious genetic defect. Would you, yourself, want (your partner) to have an abortion if a test shows the **baby** has a serious genetic defect? (Yes/No)

<sup>&</sup>lt;sup>7</sup>Singer & Couper. 2014. "The Effect of Question Wording on Attitudes toward Prenatal Testing and Abortion." Public Opinion Quarterly 78(3): 751–760.

Challenges

Conclusion

## Another framing example<sup>7</sup>

Today, tests are being developed that make it possible to detect serious genetic defects **in the fetus during pregnancy**. But so far, it is impossible either to treat or to correct most of them. If (you/your partner) were pregnant, would you want (her) to have a test to find out if the **fetus** has any serious genetic defects? (Yes/No)

Suppose a test shows the **fetus** has a serious genetic defect. Would you, yourself, want (your partner) to have an abortion if a test shows the **fetus** has a serious genetic defect? (Yes/No)

<sup>&</sup>lt;sup>7</sup>Singer & Couper. 2014. "The Effect of Question Wording on Attitudes toward Prenatal Testing and Abortion." Public Opinion Quarterly 78(3): 751–760.

Challenges

Conclusion

## Another framing example<sup>8</sup>

# Do you favor or oppose the death penalty for persons convicted of murder?

 $<sup>^{8}</sup>$ Bobo & Johnson. 2004. "A Taste for Punishment: Black and White Americans' Views on the Death Penalty and the War on Drugs." Du Bois Review 1(1): 151–180.

Challenges

Conclusion

## Another framing example<sup>8</sup>

Blacks are about 12% of the U.S. population, but they were half of the homicide offenders last year. Do you favor or oppose the death penalty for persons convicted of murder?

<sup>&</sup>lt;sup>8</sup>Bobo & Johnson. 2004. "A Taste for Punishment: Black and White Americans' Views on the Death Penalty and the War on Drugs." Du Bois Review 1(1): 151–180.

Challenges

Conclusion

## Another framing example<sup>9</sup>

Concealed handgun laws have recently received national attention. Some people have argued that law-abiding citizens have the right to protect themselves. What do you think about concealed handgun laws?

<sup>&</sup>lt;sup>9</sup>Haider-Markel & Joslyn. 2001. "Gun Policy, Opinion, Tragedy, and Blame Attribution: The Conditional Influence of Issue Frames." *Journal of Politics* 63(2): 520–543.

Challenges

Conclusion

## Another framing example<sup>9</sup>

Concealed handgun laws have recently received national attention. Some people have argued that laws allowing citizens to carry concealed handguns threaten public safety because they would allow almost anyone to carry a gun almost anywhere, even onto school grounds. What do you think about concealed handgun laws?

<sup>&</sup>lt;sup>9</sup>Haider-Markel & Joslyn. 2001. "Gun Policy, Opinion, Tragedy, and Blame Attribution: The Conditional Influence of Issue Frames." *Journal of Politics* 63(2): 520–543.

Conclusion

#### **Question Order Designs**

Manipulation of pre-outcome questionnaire

Challenges

Conclusion

### **Question Order Designs**

Manipulation of pre-outcome questionnaire

Example:

- Goal: assess influence of value salience on support for a policy
- Manipulate by asking different questions:
  - Battery of 5 "rights" questions, or
  - Battery of 5 "life" questions
- Measure support for legalized abortion

# **Question Order Designs**

- Manipulation of pre-outcome questionnaire
- Example:
  - Goal: assess influence of value salience on support for a policy
  - Manipulate by asking different questions:
    - Battery of 5 "rights" questions, or
    - Battery of 5 "life" questions
  - Measure support for legalized abortion
- If answers to manipulated questions matter, can measure rest post-outcome

## **Ex.** Question-as-treatment<sup>10</sup>

- How close do you feel to your ethnic or racial group?
- Some people have said that taxes need to be raised to take care of pressing national needs. How willing would you be to have your taxes raised to improve education in public schools?

<sup>&</sup>lt;sup>10</sup>Transue. 2007. "Identity Salience, Identity Acceptance, and Racial Policy Attitudes: American National Identity as a Uniting Force." *American Journal of Political Science* 51(1): 78–91.

Conclusion

#### **Ex.** Question-as-treatment<sup>10</sup>

How close do you feel to other Americans?

Some people have said that taxes need to be raised to take care of pressing national needs. How willing would you be to have your taxes raised to improve education in public schools?

<sup>&</sup>lt;sup>10</sup>Transue. 2007. "Identity Salience, Identity Acceptance, and Racial Policy Attitudes: American National Identity as a Uniting Force." American Journal of Political Science 51(1): 78–91.

### **Ex.** Question-as-treatment<sup>10</sup>

- How close do you feel to your ethnic or racial group?
- Some people have said that taxes need to be raised to take care of pressing national needs. How willing would you be to have your taxes raised to improve educational opportunities for minorities?

<sup>&</sup>lt;sup>10</sup>Transue. 2007. "Identity Salience, Identity Acceptance, and Racial Policy Attitudes: American National Identity as a Uniting Force." *American Journal of Political Science* 51(1): 78–91.

### **Ex.** Question-as-treatment<sup>10</sup>

- How close do you feel to other Americans?
- Some people have said that taxes need to be raised to take care of pressing national needs. How willing would you be to have your taxes raised to improve educational opportunities for minorities?

<sup>&</sup>lt;sup>10</sup>Transue. 2007. "Identity Salience, Identity Acceptance, and Racial Policy Attitudes: American National Identity as a Uniting Force." American Journal of Political Science 51(1): 78–91.

#### Ex.: Knowledge and Political Interest

- Do you happen to remember anything special that your U.S. Representative has done for your district or for the people in your district while he has been in Congress?
- 2 Is there any legislative bill that has come up in the House of Representatives, on which you remember how your congressman has voted in the last couple of years?
- 3 Now, some people seem to follow what's going on in government and public affairs most of the time, whether there's an election going on or not. Others aren't that interested. Would you say that you follow what's going on in government and public affairs most of the time, some of the time, only now and then, or hardly at all?

#### **Ex.: Knowledge and Political Interest**

- Now, some people seem to follow what's going on in government and public affairs most of the time, whether there's an election going on or not. Others aren't that interested. Would you say that you follow what's going on in government and public affairs most of the time, some of the time, only now and then, or hardly at all?
- 2 Do you happen to remember anything special that your U.S. Representative has done for your district or for the people in your district while he has been in Congress?
- 3 Is there any legislative bill that has come up in the House of Representatives, on which you remember how your congressman has voted in the last couple of years?

## An Instructional Manipulation<sup>11</sup>

For the next few questions, I am going to read out some statements, and for each one, please tell me if it is true or false. If you don't know, just say so and we will skip to the next one.

- **1** Britain's electoral system is based on proportional representation.
- 2 MPs from different parties are on parliamentary committees.
- 3 The Conservatives are opposed to the ratification of a constitution for the European Union.

<sup>&</sup>lt;sup>11</sup>Sturgis, Allum & Smith. 2008. "An Experiment on the Measurement of Political Knowledge in Surveys." Public Opinion Quarterly 72(1): 90–102.

## An Instructional Manipulation<sup>11</sup>

For the next few questions, I am going to read out some statements, and for each one, please tell me if it is true or false. If you don't know, please just give me your best guess.

- **1** Britain's electoral system is based on proportional representation.
- 2 MPs from different parties are on parliamentary committees.
- 3 The Conservatives are opposed to the ratification of a constitution for the European Union.

<sup>&</sup>lt;sup>11</sup>Sturgis, Allum & Smith. 2008. "An Experiment on the Measurement of Political Knowledge in Surveys." Public Opinion Quarterly 72(1): 90–102.

Conclusion

#### An Instructional Manipulation + <sup>12</sup>

In the next part of this study, you will be asked 14 questions about politics, public policy, and economics. Many people don't know the answers to these questions, but it is helpful for us if you answer, even if you're not sure what the correct answer is. We encourage you to take a guess on every question. At the end of this study, you will see a summary of how many questions you answered correctly.

<sup>&</sup>lt;sup>12</sup>Prior & Lupia. 2008. "Money, Time, and Political Knowledge: Distinguishing Quick Recall and Political Learning Skills." American journal of Political Science 52(1): 169–183.

Conclusion

#### An Instructional Manipulation + <sup>12</sup>

We will pay you for answering questions correctly. You will earn \$1 for every correct answer you give. So, if you answer 3 of the 14 questions correctly, you will earn \$3. If you answer 7 of the 14 questions correctly, you will earn \$7. The more questions you answer correctly, the more you will earn.

<sup>&</sup>lt;sup>12</sup>Prior & Lupia. 2008. "Money, Time, and Political Knowledge: Distinguishing Quick Recall and Political Learning Skills." American journal of Political Science 52(1): 169–183.

# Vignettes

- A "vignette" is a short text describing a situation
- Vignettes are probably the most common survey experimental paradigm, after question wording designs
- Take many forms and increasingly encompass non-textual stimuli
- Basically limited to web-based mode

# A classic vignette<sup>13</sup>

Now think about a **(black/white)** woman in her early thirties. She is a high school **(graduate/drop out)** with a ten-year-old child, and she has been on welfare for the past year.

- How likely is it that she will have more children in order to get a bigger welfare check? (1 = Very likely, ..., 7 = Not at all likely)
- How likely do you think it is that she will really try hard to find a job in the next year? (1 = Very likely, ..., 7 = Not at all likely)

<sup>&</sup>lt;sup>13</sup>Gilens, M. 1996. "'Race coding' and white opposition to welfare. American Political Science Review 90(3): 593–604.

# Newer vignette<sup>14</sup>

Imagine that you were living in a village in another district in Uttar
Pradesh and that you were voting for candidates in
(village/state/national) election. Here are the two candidates who are
running against each other: The first candidate is named (caste name)
and is running as the (BJP/SP/BSP) party candidate.
(Corrupt/criminality allegation). His opponent is named (caste name) and is running as the (BJP/SP/BSP) party candidate.
(Opposite corrupt/criminality allegation). From this information, please indicate which candidate you would vote for in the
(village/state/national) election.

<sup>&</sup>lt;sup>14</sup>Banerjee et al. 2012. "Are Poor Voters Indifferent to Whether Elected Leaders are Criminal or Corrupt? A Vignette Experiment in Rural India." Working paper.

Conclusion

#### Longer vignette example<sup>15</sup>

Fears of Future Terror Attacks Warranted

By Andrew Tardaca Published: January 17, 2009

U.S. citizens are bracing for another 9/11 type terrorist attack, according to a variety of reports. A recent Gallup poll finds that 87% of the American public is highly concerned about the possibility of a terrorist attack at home. According to new information from several international sources, these fears are well supported.

A raid on a London terrorist hideout on November 9, 2008 resulted in the capture of computer files that identified numerous U.S. financial districts, cultural centers, and transportation systems on a list of future Al Qaeda targets. According to a recent overseas intelligence report, "al Qaeda already has several cells operating in the U.S. that may be on the verge of mounting a large-scale terrorist attack."

On September 11, 2001, Al Qaeda's attacks killed nearly 3,000 men, women, and children, and injured over 6,000 more. Since September 11<sup>th</sup>, Al Qaeda and groups affiliated with Al Qaeda have waged attacks in countries such as Egypt, Indonesia, Kenya, Morocco, Saudi Arabia, Spain, Turkey, the United Kingdom, and most recently India. U.S. security officials are warning that current terroist plots include plans for attacks on U.S. soil at least twice the magnitude of 9/11. An anonymous source reported that recent inelligence documents contain "sobering information" concerning the magnitude of future terroist attacks.

Warnings issued by extremist groups such as Al Qaeda to "attack U.S. interests and allies on its soil" are even more alarming given the state of preparedness for future incidents. Experts have issued warnings about

<sup>&</sup>lt;sup>15</sup>Merolla & Zechmeister. 2013. "Evaluating Political Leaders in Times of Terror and Economic Threat: The Conditioning Influence of Politician Partisanship." *Journal of Politics* 75(3): 599–712.

Conclusion

#### Longer vignette example<sup>15</sup>

Economic Recession Projected to Deepen

By Andrew Tardaca Published: January 17, 2009

U.S. citizens are bracing for a drastic deepening of the current economic recession. A recent Gallup poll finds that 87% of the American public is highly concerned about economic conditions in the econntry. The report further states "The economic mood is grimmer than it has been since 1992."

On September 16, failures of large financial institutions in the United States, such as Lehman Brothers and AIG, rapidly evolved into a global crisis resulting in bank failures across the U.S. and Europe. In the United States alone, 15 banks failed in 2008, while several others were rescued through government intervention or acquisitions by other banks. These events led to sharp reductions in the value of stocks and commodities worldwide. Over the past year, the Dow Jones Industrial Average lost 33.8%, the third worst loss in our nation's history. On October 11, 2008, the head of the International Monetary Fund (IMF) warned that the world financial system is teetering on the "bink of systemic meltdown".

The bank failures and subsequent market collapse were tied to sub-prime loans and credit default swaps. Increasing interest rates on loans hit the housing market particularly hard, as individuals were unable to keep up with mortgage payments. 2008 witnessed a record number of foreclosures, leading to the worst housing crisis, banking failure, and market collapse since the Great Depression.

Future projections are looking even grimmer. Experts predict that the housing market will not recover for at least a decade, especially now that banks are hesitant to make loans. The downturn in the economy has led to

<sup>&</sup>lt;sup>15</sup>Merolla & Zechmeister. 2013. "Evaluating Political Leaders in Times of Terror and Economic Threat: The Conditioning Influence of Politician Partisanship." *Journal of Politics* 75(3): 599–712.
Conclusion

Conclusion

- Comparability across conditions
  - Length
  - Readability

- Comparability across conditions
  - Length
  - Readability
- Language proficiency

- Comparability across conditions
  - Length
  - Readability
- Language proficiency
- Length
  - Timers
  - Forced exposure
  - Mouse trackers

- Comparability across conditions
  - Length
  - Readability
- Language proficiency
- Length
  - Timers
  - Forced exposure
  - Mouse trackers
- Devices
  - Browser-specificity
  - Device sizes (e.g., mobile)



width (px)

- Images can work well
- Standalone or embedded in a text or question

<sup>&</sup>lt;sup>16</sup> "Cueing Patriotism, Prejudice, and Partisanship in the Age of Obama: Experimental Tests of U.S. Flag Imagery Effects in Presidential Elections." *Political Psychology*: in press.

- Images can work well
- Standalone or embedded in a text or question
- Examples
  - Kalmoe & Gross<sup>16</sup> measure impact of patriotic cues on candidate support by showing images of candidates with and without flags

<sup>&</sup>lt;sup>16</sup> "Cueing Patriotism, Prejudice, and Partisanship in the Age of Obama: Experimental Tests of U.S. Flag Imagery Effects in Presidential Elections." *Political Psychology*: in press.

- Images can work well
- Standalone or embedded in a text or question
- Examples
  - Kalmoe & Gross<sup>16</sup> measure impact of patriotic cues on candidate support by showing images of candidates with and without flags
  - Subliminal primes possible, depending on software

<sup>&</sup>lt;sup>16</sup> "Cueing Patriotism, Prejudice, and Partisanship in the Age of Obama: Experimental Tests of U.S. Flag Imagery Effects in Presidential Elections." *Political Psychology*: in press.

- Images can work well
- Standalone or embedded in a text or question
- Examples
  - Kalmoe & Gross<sup>16</sup> measure impact of patriotic cues on candidate support by showing images of candidates with and without flags
  - Subliminal primes possible, depending on software
  - Lots of recent examples of facial manipulation

<sup>&</sup>lt;sup>16</sup>"Cueing Patriotism, Prejudice, and Partisanship in the Age of Obama: Experimental Tests of U.S. Flag Imagery Effects in Presidential Elections." *Political Psychology*: in press.

Theory

Challenges

Conclusion

# **Example**<sup>17</sup>



Light Complexion



Original



**Dark Complexion** 

 $<sup>^{17}</sup>$ lyengar et al. 2010. "Do Explicit Racial Cues Influence Candidate Preference? The Case of Skin Complexion in the 2008 Campaign." Working paper.

Challenges

Conclusion

### $\textbf{Example}^{18}$



<sup>&</sup>lt;sup>18</sup>Laustsen & Petersen. 2016. "Winning Faces vary by Ideology." Political Communication 33(2): 188-211.

Challenges

Conclusion

#### Example<sup>19</sup>



<sup>&</sup>lt;sup>19</sup>Bailenson et al. 2006. "Transformed Facial Similarity as a Political Cue: A Preliminary Investigation." *Political Psychology* 27(3): 373–385.

#### Audio & Video manipulations

Problematic for same reasons as long texts

<sup>&</sup>lt;sup>20</sup>Vavreck. 2007 "The Exaggerated Effects of Advertising on Turnout: The Dangers of Self-Reports." *Quarterly Journal of Political Science* 2: 325–343.

<sup>&</sup>lt;sup>21</sup>Mutz. 2007. "Effects of 'In-Your-Face' Television Discourse on Perceptions of a Legitimate Opposition." American Political Science Review 101(4): 621–635.

#### Audio & Video manipulations

- Problematic for same reasons as long texts
- Best practices
  - Keep it short
  - Have the video play automatically
  - Disallow survey progression
  - Control and validate

<sup>&</sup>lt;sup>20</sup>Vavreck. 2007 "The Exaggerated Effects of Advertising on Turnout: The Dangers of Self-Reports." Quarterly Journal of Political Science 2: 325–343.

<sup>&</sup>lt;sup>21</sup>Mutz. 2007. "Effects of 'In-Your-Face' Television Discourse on Perceptions of a Legitimate Opposition." American Political Science Review 101(4): 621–635.

#### Audio & Video manipulations

- Problematic for same reasons as long texts
- Best practices
  - Keep it short
  - Have the video play automatically
  - Disallow survey progression
  - Control and validate
- Examples
  - Television Advertisements<sup>20</sup>
  - News Programs<sup>21</sup>

<sup>&</sup>lt;sup>20</sup>Vavreck. 2007 "The Exaggerated Effects of Advertising on Turnout: The Dangers of Self-Reports." Quarterly Journal of Political Science 2: 325–343.

<sup>&</sup>lt;sup>21</sup>Mutz. 2007. "Effects of 'In-Your-Face' Television Discourse on Perceptions of a Legitimate Opposition." American Political Science Review 101(4): 621–635.

### "Task" Designs

Task designs ask respondents to perform a taskOften developed for laboratory settings

### "Task" Designs

- Task designs ask respondents to perform a task
- Often developed for laboratory settings
- Most common example: writing something

## "Task" Designs

- Task designs ask respondents to perform a task
- Often developed for laboratory settings
- Most common example: writing something
- Can be problematic:
  - Time-intensive
  - Invites drop-off
  - Compliance problems

# Univalent

These days, Democrats and Republicans differ from one another considerably. The two groups seem to be growing further and further apart, not only in terms of their opinions but also their lifestyles. Earlier in the survey, you said you tend to identify as a *Democrat/ Republican*. Please take a few minutes to think about what you like about *Democrats*/ *Republicans* compared to the *Republicans*/ *Democrats.* Think of 2 to 3 things you especially like best about **your party**. Then think of 2 to 3 things you especially dislike about **the other party**. Now please write those thoughts in the space below.

## Ambivalent

These days, Democrats and Republicans differ from one another considerably. The two groups seem to be growing further and further apart, not only in terms of their opinions but also their lifestyles. Earlier in the survey, you said you tend to identify as a *Democrat/ Republican*. Please take a few minutes to think about what you like about *Democrats*/ *Republicans* compared to the *Republicans*/ *Democrats.* Think of 2 to 3 things you especially like best about **the other party**. Then think of 2 to 3 things you especially dislike about **your party**. Now please write those thoughts in the space below.

Theory

Challenges

Conclusion

### Questions?

#### 1 History and Logic of Experiments

#### 2 From Theory to Design

- Translating Hypotheses into Designs
  Assessing Quality
- Common Paradigms and Examples
- More Advanced Designs
- Challenges and Criticisms
  Participant Recruitment
  Attention and Satisficing
  Use of Covariates
- 4 Conclusion

# **Beyond Simple Designs**

- Factorial designs
- 2 Sensitive question designs
- 3 Conjoint designs
- Multi-component designs
  - Over-time measurement/randomization
  - Field–survey combinations

## Sensitive Item Designs

- Randomization can be used to measure something
- List experiments
  - Randomly present lists of items of varying length
    Difference in count of items supported is prevalence of sensitive attitude/behavior
- Randomized response
  - Present a sensitive question
  - Use a randomization device to dictate whether the respondent answers the sensitive question or something else

Theory

Challenges

Conclusion

#### List Experiments <sup>22</sup>

Now I'm going to read you three things that sometimes make people angry or upset. After I read all three, just tell me *how many* of them upset you. I don't want to know which ones. just *how many*.

- 1 the federal government increasing the tax on gasoline
- 2 professional athletes getting million-dollar salaries
- 3 large corporations polluting the environment

<sup>&</sup>lt;sup>22</sup>Kuklinski et al. 1997. "Racial Prejudice and Attitudes Toward Affirmative Action." American Journal of Political Science 41(2): 402–419.

Theory

Challenges

Conclusion

#### List Experiments <sup>22</sup>

Now I'm going to read you three things that sometimes make people angry or upset. After I read all three, just tell me *how many* of them upset you. I don't want to know which ones. just *how many*.

- 1 the federal government increasing the tax on gasoline
- 2 professional athletes getting million-dollar salaries
- 3 large corporations polluting the environment
- a black family moving in next door

<sup>&</sup>lt;sup>22</sup>Kuklinski et al. 1997. "Racial Prejudice and Attitudes Toward Affirmative Action." *American Journal of Political Science* 41(2): 402–419.

Challenges

# **Randomized Response**<sup>23</sup>

#### Example:

Here is a bag; in it there are stones from the game 'Go,' some colored black and others white. Please take one stone out, and see by yourself what color it is, black or white. Don't let me know whether it is black or white, but be sure you know which it is. If you take a black one, answer the question: "Have you ever had an induced abortion?"

If you take a white one, answer the question: "Were you born in

the lunar year of the horse?'

#### Considerations:

Can use any randomization device

Can be cognitively complex

<sup>&</sup>lt;sup>23</sup>Blair, Imai, and Zhou. 2015. "Design and Analysis of the Randomized Response Technique." JASA 110(511): 1304–19.

Theory

Challenges

Conclusion

# **Conjoint Analysis**

- Surveys measure *stated* preferences
- Conjoint analysis involves measuring revealed preferences based upon a series of forced-choice decisions
  - Present respondents with pairs of "profiles" containing many *features*
  - Force respondents to choose which of the two they prefer
- Estimate *relative* importance of features of each profile

#### Conclusion

# Advantages/Disadvantages

#### Advantages

Theory

- Reduces "cheap talk" results
- Lower social desirability biases
- Mimics real-world decisions
- Revealed preferences are causally interpretable

#### Disadvantages

- More cognitively complex for respondents than traditional polling
- No straightforward "% support" statistics

# **Structure of Conjoints**

Three examples:

Theory

- 1 Policy preference on Brexit negotiations
- 2 Choice of BBC Director General
- 3 Choice of a lodger
- All are binary, forced-choice designs
- Analysis is all focused on AMCEs or subgroup AMCEs
  - Estimated using OLS dummy variable regression

#### **Conjoint 1: Brexit Negotiations**

#### **You**Gov

We are interested in your opinions about the negotiations between Britain and the European Union regarding Britain's exit from the EU and future relationship with the EU. Please look carefully at these two possible outcomes:

|                                                                                                        | Outcome A                                                                                          | Outcome B                                                                                         |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Britain's one-off payment to the EU to<br>settle outstanding commitments                               | No payment                                                                                         | £10 billion                                                                                       |
| When this will come into effect                                                                        | 2025                                                                                               | 2023                                                                                              |
| Border checks between Northern Ireland<br>and the Republic of Ireland                                  | No passport checks and no customs<br>checks                                                        | Full passport and customs checks                                                                  |
| EU's legal authority in Britain                                                                        | Britain adopts some EU laws but is<br>not subject to decisions by the<br>European Court of Justice | Britain is subject to all EU laws and<br>all decisions by the European Court<br>of Justice        |
| Britain's future payments to the EU<br>budget to access science and regional<br>development programmes | £1 billion per year for access                                                                     | £1 billion per year for access                                                                    |
| Trade agreement with the EU                                                                            | Many administrative barriers to trade<br>in goods and services and 5%<br>average tariff on goods   | Few administrative barriers to trade<br>in goods and services and 2.5%<br>average tariff on goods |
| Policy on immigration from the EU                                                                      | Full control over EU immigration and<br>little to no EU immigration                                | Some control over EU immigration<br>and lower levels of EU immigration<br>than now                |
| Future rights of current EU nationals in<br>Britain and British nationals in the EU                    | All can stay indefinitely                                                                          | Must apply for 'leave to remain'<br>under the same terms as people<br>from non-EU countries       |

Which of these two outcomes do you prefer?

#### **Conjoint 2: BBC Director**

Imagine that you are deciding who to appoint as the next Director General of the BBC. You have received the following information about two applicants and need to make a decision between them.

- Tom
- 68 years old

- Former lawyer

- Has worked 21 years for the BBC
- Has a degree from the University of  $\mathsf{O}\mathsf{x}\mathsf{ford}$
- Didn't vote at the 2017 election
- Voted Remain in the EU referendum

- Claire
- 35 years old
- Has never worked for the BBC
- Has a PhD from the University of Exeter
- Voted Conservative at the 2017 election
- Didn't vote in the EU referendum
- Former television producer

Which of the two applicants would you prefer as the next Director General of the BBC?

#### Conjoint 3: Lodger

Imagine that you have a spare room that you want to rent out to a lodger. You have received the following information about two possible lodgers and need to make a decision between them.

- James
- 19 years old
- Full-time student
- Helps out at the local Anglican church
- Didn't vote at the 2017 election
- Voted Remain in the EU referendum
- Likes watching rugby

- Becky
- 35 years old
- Works for a private company
- Volunteers at an  $\mathsf{O}\mathsf{x}\mathsf{fam}$  shop
- Voted Conservative at the  $2017 \\ \mbox{election}$
- Didn't vote in the EU referendum
- Likes playing videogames

Which of the two lodgers would you prefer?

# **AMCEs**

Statistic of interest is the *average marginal component effect* (AMCE), which is the causal effect of each level of each feature on support for an overall profile.

We can estimate this using (dummy variable) OLS, assuming:

- Full randomization of attributes and randomized pairing of profiles
- Even presentation of levels w/in features
- No profile ordering effects
Theory



Challenges



Challenges



Conclusion

Challenges

Theory

History/Logic



Conclusion

# Implementing a Conjoint

- Hope someone else can do it for you!
  - Requires programming
  - Not possible to manually create all possible combinations
- Strezhnev et al.'s tool: https://scholar.harvard.edu/astrezhnev/ conjoint-survey-design-tool
- Qualtrics using Javascript: https://github.com/leeper/conjoint-example

Theory

Challenges

Conclusion

Theory

Challenges

Conclusion

# Questions?

- 1 History and Logic of Experiments
- 2 From Theory to Design
   Translating Hypotheses into Designs
   Assessing Quality
   Common Paradigms and Examples
   More Advanced Designs
- 3 Challenges and Criticisms
  Participant Recruitment
  Attention and Satisficing
  Use of Covariates

- 1 History and Logic of Experiments
- 2 From Theory to Design
   Translating Hypotheses into Designs
   Assessing Quality
   Common Paradigms and Examples
   More Advanced Designs
- 3 Challenges and Criticisms
   Participant Recruitment
   Attention and Satisficing
   Use of Covariates
- 4 Conclusion

# How do we find participants?

### Volunteers

- Volunteer Science
- In-house subject pool

### Paid crowdworkers

- Prolific Academic
- Mechanical Turk
- Crowdflower
- "Representative" samples
  - Big players: YouGov, TNS, Gallup, Nielsen, GfK
  - Others: Kantar, SSI, Lucid

# SUTO Framework

- Cronbach (1986) talks about generalizability in terms of UTO
- Shadish, Cook, and Campbell (2001) speak similarly of:
  - Settings
  - **U**nits
  - Treatments
  - **O**utcomes

External validity depends on all of these

## Population

- Setting
- Units
- Treatments
- Outcomes

## Your Study

- Setting
- Units
- Treatments
  - Outcomes



In your study, how do these correspond?

## Population

- Setting
- Units
- Treatments
- Outcomes

## Your Study

- Setting
- Units
- Treatments
- Outcomes

In your study, how do these correspond? how do these differ?

## Population

- Setting
- Units
- Treatments
- Outcomes

## Your Study

- Setting
- Units
- Treatments
- Outcomes

In your study, how do these correspond? how do these differ? do these differences matter?

# **Common Differences**

- Most common thing to focus on is demographic representativeness
  - Sears (1986): "students aren't real people"
  - Western, educated, industrialized, rich, democratic (WEIRD) psychology participants

# **Common Differences**

- Most common thing to focus on is demographic representativeness
  - Sears (1986): "students aren't real people"
  - Western, educated, industrialized, rich, democratic (WEIRD) psychology participants

But do those characteristics actually matter?

# **Common Differences**

- Most common thing to focus on is demographic representativeness
  - Sears (1986): "students aren't real people"
  - Western, educated, industrialized, rich, democratic (WEIRD) psychology participants
  - But do those characteristics actually matter?
- Shadish, Cook, and Campbell tell us to think about:
  - Surface similarities
  - Ruling out irrelevancies
  - Making discriminations
  - Interpolation/extrapolation



Original Study - Significant - Not Significant



Difference in CATES - Significant - Not Significant

Theory

Challenges

Conclusion

# Questions?

- 1 History and Logic of Experiments
- 2 From Theory to Design
   Translating Hypotheses into Designs
   Assessing Quality
   Common Paradigms and Examples
   More Advanced Designs
- Challenges and Criticisms
   Participant Recruitment
   Attention and Satisficing
   Use of Covariates
- 4 Conclusion

One final issue with unit-related sources of heterogeneity is how we handle or analyze survey-experimental data where we think participants misbehaved.

Conclusion

One final issue with unit-related sources of heterogeneity is how we handle or analyze survey-experimental data where we think participants misbehaved.

This falls into a couple of broad categories:

- Noncompliance
- Inattention
- Survey Satisficing

How should we deal with respondents that appear to not be paying attention, not "taking" the treatment, or not responding to outcome measures?

- 1 Keep them
- 2 Throw them away

## Best Practice: Pre-Analysis Protocol

 Excluding respondents based on survey behavior is one of the easiest ways to "p-hack" an experimental dataset

Inattention, satisficing, etc. will tend to reduce the size of the SATE

 So regardless of how you handle these respondents, these should be decisions that are made *pre-analysis*

#### When are you excluding participants?

### Pre-Treatment

Post-Treatment









### When are you excluding participants?

## **Pre-Treatment**

- Satisficing behaviors
- Inattention
- Covariate-based selection
- Pretreated

### Post-Treatment

 Speeding on treatment

### When are you excluding participants?

## Pre-Treatment

- Satisficing behaviors
- Inattention
- Covariate-based selection
- Pretreated

### Post-Treatment

- Speeding on treatment
- "Failing" a manipulation check

### When are you excluding participants?

## Pre-Treatment

- Satisficing behaviors
- Inattention
- Covariate-based selection
- Pretreated

### Post-Treatment

- Speeding on treatment
- "Failing" a manipulation check

Drop-off

## **Pre-Treatment Exclusion**

 This is totally fine from a causal inference perspective

# **Pre-Treatment Exclusion**

- This is totally fine from a causal inference perspective
- Advantages:
  - Focused on engaged respondents
  - Likely increase impact of treatment
### **Pre-Treatment Exclusion**

- This is totally fine from a causal inference perspective
- Advantages:
  - Focused on engaged respondents
  - Likely increase impact of treatment
- Disadvantages:
  - Changing definition of sample (and thus population)

Conclusion

### **Post-Treatment Exclusion**

This is much more problematic because it involves controlling for a *post-treatment* variable





Risk that estimate of  $\beta_1$  is diminished because effect is being carried through the manipulation check.



Introduction of "collider bias" wherein values of the manipulation check are affected by other factors.

 Any post-treatment exclusion is problematic and should be avoided

- Any post-treatment exclusion is problematic and should be avoided
- Can estimate a LATE
  - Interpretation: Effect of manipulation check among those whose value of the check can be changed by the treatment manipulation

- Any post-treatment exclusion is problematic and should be avoided
- Can estimate a LATE
  - Interpretation: Effect of manipulation check among those whose value of the check can be changed by the treatment manipulation
- Non-response or attrition is the same as researcher-imposed exclusion
  - Not problematic if MCAR
  - Nothing really to be done if caused by treatment



Introduction of "collider bias" wherein values of the manipulation check are affected by other factors.



- Any post-treatment exclusion is problematic and should be avoided
- Can estimate a LATE
  - Interpretation: Effect of manipulation check among those whose value of the check can be changed by the treatment manipulation

- Any post-treatment exclusion is problematic and should be avoided
- Can estimate a LATE
  - Interpretation: Effect of manipulation check among those whose value of the check can be changed by the treatment manipulation
- Non-response or attrition is the same as researcher-imposed exclusion
  - Not problematic if MCAR
  - Nothing really to be done if caused by treatment

History/Logic

Theory

Challenges

Conclusion

### Questions?

# **Apparent Satisficing**

#### Some common measures:

- "Straightlining"
- Non-differentiation
- Acquiescence
- Nonresponse
- DK responding
- Speeding
- Difficult to detect and distinguish from "real" responses

## Metadata/Paradata

#### Timing

- Some survey tools will allow you to time page
- Make a prior rules about dropping participants for speeding

# Metadata/Paradata

#### Timing

- Some survey tools will allow you to time page
- Make a prior rules about dropping participants for speeding
- Mousetracking or eyetracking
  - Mousetracking is unobtrusive
  - Eyetracking requires participants opt-in

# Metadata/Paradata

### Timing

- Some survey tools will allow you to time page
- Make a prior rules about dropping participants for speeding
- Mousetracking or eyetracking
  - Mousetracking is unobtrusive
  - Eyetracking requires participants opt-in

Record focus/blur browser events

### **Direct Measures**

How closely have you been paying attention to what the questions on this survey actually mean?

# **Direct Measures**

- How closely have you been paying attention to what the questions on this survey actually mean?
- While taking this survey, did you engage in any of the following behaviors? Please check all that apply.
  - Use your mobile phone
  - Browse the internet

. . .

#### Instructional Manipulation Check

We would like to know if you are reading the questions on this survey. If you are reading carefully, please ignore this question, do not select any answer below, and click "next" to proceed with the survey.

Strongly disagree Somewhat disagree Neither agree nor disagree Somewhat agree Strongly agree

Challenges

Conclusion

#### Instructional Manipulation Check

Do you agree or disagree with the decision to send British forces to fight ISIL in Syria? We would like to know if you are reading the questions on this survey. If you are reading carefully, please ignore this question, do not select any answer below, and click "next" to proceed with the survey.

Strongly disagree Somewhat disagree Neither agree nor disagree Somewhat agree Strongly agree

Return

#### **Treatment Noncompliance**

### Definition:

"when subjects who were assigned to receive the treatment go untreated or when subjects assigned to the control group are treated"  $^{\rm 24}$ 

<sup>&</sup>lt;sup>24</sup>Gerber & Green. 2012. Field Experiments, p.132.

### **Treatment Noncompliance**

### Definition:

"when subjects who were assigned to receive the treatment go untreated or when subjects assigned to the control group are treated"  $^{\rm 24}$ 

#### Several strategies

- "As treated" analysis
- "Intention to treat" analysis
- Estimate a LATE

<sup>&</sup>lt;sup>24</sup>Gerber & Green. 2012. Field Experiments, p.132.

#### **Analyzing Noncompliance**

- If noncompliance only occurs in one group, it is asymmetric or one-sided
- We can ignore non-compliance and analyze the "intention to treat" effect, which will underestimate our effects because some people were not treated as assigned:  $ITT = \overline{Y}_1 - \overline{Y}_0$

### **Analyzing Noncompliance**

- If noncompliance only occurs in one group, it is asymmetric or one-sided
- We can ignore non-compliance and analyze the "intention to treat" effect, which will underestimate our effects because some people were not treated as assigned:  $ITT = \overline{Y}_1 - \overline{Y}_0$
- We can use "instrumental variables" to estimate the "local average treatment effect" (LATE) for those that complied with treatment:  $LATE = \frac{ITT}{\%Compliant}$

### Local Average Treatment Effect

- IV estimate is *local* to the variation in *X* that is due to variation in *D*
- This matters if effects are heterogeneous
- LATE is effect for those who comply
- Four subpopulations:
  - Compliers: X = 1 only if D = 1
  - Always-takers: X = 1 regardless of D
  - Never-takers: X = 0 regardless of D
  - Defiers: X = 1 only if D = 0
- Exclusion restriction! Monotonicity!

History/Logic

Theory

Challenges

Conclusion

### Questions?

### 1 History and Logic of Experiments

- 2 From Theory to Design
   Translating Hypotheses into Designs
   Assessing Quality
   Common Paradigms and Examples
   More Advanced Designs
- 3 Challenges and Criticisms
   Participant Recruitment
   Attention and Satisficing
   Use of Covariates
- 4 Conclusion

Challenges

Conclusion

### **Block Randomization I**

Stratification:Sampling::Blocking:Experiments

## **Block Randomization I**

#### Stratification:Sampling::Blocking:Experiments

 Basic idea: randomization occurs within strata defined before treatment assignment

## **Block Randomization I**

#### Stratification:Sampling::Blocking:Experiments

- Basic idea: randomization occurs within strata defined before treatment assignment
- CATE is estimate for each stratum; aggregated to SATE

# **Block Randomization I**

#### Stratification:Sampling::Blocking:Experiments

- Basic idea: randomization occurs within strata defined before treatment assignment
- CATE is estimate for each stratum; aggregated to SATE
- Why?
  - Eliminate chance imbalances
  - Optimized for estimating CATEs
  - More precise SATE estimate

| Exp. |   | Control |   |   | Treatment |   |   |   |
|------|---|---------|---|---|-----------|---|---|---|
| 1    | М | М       | Μ | М | F         | F | F | F |
| 2    | Μ | Μ       | Μ | F | Μ         | F | F | F |
| 3    | Μ | Μ       | F | F | Μ         | Μ | F | F |
| 4    | Μ | F       | F | F | Μ         | Μ | Μ | F |
| 5    | F | F       | F | F | Μ         | М | М | М |

```
# population of men and women
pop <- rep(c("Male", "Female"), each = 4)</pre>
```

```
# randomly assign into treatment and control
split(sample(pop, 8, FALSE), c(rep(0,4), rep(1,4)))
```

| Obs. | $X_{1i}$ | $X_{2i}$ | Di |
|------|----------|----------|----|
| 1    | Male     | Old      | 0  |
| 2    | Male     | Old      | 1  |
| 3    | Male     | Young    | 1  |
| 4    | Male     | Young    | 0  |
| 5    | Female   | Old      | 1  |
| 6    | Female   | Old      | 0  |
| 7    | Female   | Young    | 0  |
| 8    | Female   | Young    | 1  |

## **Block Randomization II**

- Blocking ensures ignorability of all covariates used to construct the blocks
- Incorporates covariates explicitly into the design

## **Block Randomization II**

- Blocking ensures ignorability of all covariates used to construct the blocks
- Incorporates covariates explicitly into the design
- When is blocking statistically useful?
# **Block Randomization II**

- Blocking ensures ignorability of all covariates used to construct the blocks
- Incorporates covariates explicitly into the design
- When is blocking statistically useful?
  - If those covariates affect values of potential outcomes, blocking reduces the variance of the SATE

# **Block Randomization II**

- Blocking ensures ignorability of all covariates used to construct the blocks
- Incorporates covariates explicitly into the design
- When is blocking statistically useful?
  - If those covariates affect values of potential outcomes, blocking reduces the variance of the SATE
  - Most valuable in small samples

# **Block Randomization II**

- Blocking ensures ignorability of all covariates used to construct the blocks
- Incorporates covariates explicitly into the design
- When is blocking statistically useful?
  - If those covariates affect values of potential outcomes, blocking reduces the variance of the SATE
  - Most valuable in small samples
  - Not valuable if all blocks have similar potential outcomes

# **Statistical Properties I**

Complete randomization:

$$SATE = \frac{1}{n_1} \sum Y_{1i} - \frac{1}{n_0} \sum Y_{0i}$$

Block randomization:

$$SATE_{blocked} = \sum_{1}^{J} \left( \frac{n_j}{n} \right) \left( \widehat{CATE}_j \right)$$

| Obs. | $X_{1i}$ | $X_{2i}$ | Di | $Y_i$ | CATE |
|------|----------|----------|----|-------|------|
| 1    | Male     | Old      | 0  | 5     |      |
| 2    | Male     | Old      | 1  | 10    |      |
| 3    | Male     | Young    | 1  | 4     |      |
| 4    | Male     | Young    | 0  | 1     |      |
| 5    | Female   | Old      | 1  | 6     |      |
| 6    | Female   | Old      | 0  | 2     |      |
| 7    | Female   | Young    | 0  | 6     |      |
| 8    | Female   | Young    | 1  | 9     |      |

| Obs. | $X_{1i}$ | $X_{2i}$ | Di | $Y_i$ | CATE |
|------|----------|----------|----|-------|------|
| 1    | Male     | Old      | 0  | 5     | F    |
| 2    | Male     | Old      | 1  | 10    | 5    |
| 3    | Male     | Young    | 1  | 4     |      |
| 4    | Male     | Young    | 0  | 1     |      |
| 5    | Female   | Old      | 1  | 6     |      |
| 6    | Female   | Old      | 0  | 2     |      |
| 7    | Female   | Young    | 0  | 6     |      |
| 8    | Female   | Young    | 1  | 9     |      |

| Obs. | $X_{1i}$ | $X_{2i}$ | Di | $Y_i$ | CATE |
|------|----------|----------|----|-------|------|
| 1    | Male     | Old      | 0  | 5     | Б    |
| 2    | Male     | Old      | 1  | 10    | 5    |
| 3    | Male     | Young    | 1  | 4     | 2    |
| 4    | Male     | Young    | 0  | 1     | 3    |
| 5    | Female   | Old      | 1  | 6     |      |
| 6    | Female   | Old      | 0  | 2     |      |
| 7    | Female   | Young    | 0  | 6     |      |
| 8    | Female   | Young    | 1  | 9     |      |

| Obs. | $X_{1i}$ | $X_{2i}$ | Di | $Y_i$ | CATE |
|------|----------|----------|----|-------|------|
| 1    | Male     | Old      | 0  | 5     | F    |
| 2    | Male     | Old      | 1  | 10    | 5    |
| 3    | Male     | Young    | 1  | 4     | 2    |
| 4    | Male     | Young    | 0  | 1     | 3    |
| 5    | Female   | Old      | 1  | 6     | Л    |
| 6    | Female   | Old      | 0  | 2     | 4    |
| 7    | Female   | Young    | 0  | 6     |      |
| 8    | Female   | Young    | 1  | 9     |      |

| Obs. | $X_{1i}$ | $X_{2i}$ | Di | $Y_i$ | CATE |
|------|----------|----------|----|-------|------|
| 1    | Male     | Old      | 0  | 5     | Б    |
| 2    | Male     | Old      | 1  | 10    | 5    |
| 3    | Male     | Young    | 1  | 4     | 2    |
| 4    | Male     | Young    | 0  | 1     | 3    |
| 5    | Female   | Old      | 1  | 6     | Л    |
| 6    | Female   | Old      | 0  | 2     | 4    |
| 7    | Female   | Young    | 0  | 6     | 2    |
| 8    | Female   | Young    | 1  | 9     | 5    |

Challenges

Conclusion

### **SATE** Estimation

$$SATE = \left(\frac{2}{8} * 5\right) + \left(\frac{2}{8} * 3\right) + \left(\frac{2}{8} * 4\right) + \left(\frac{2}{8} * 3\right)$$
$$= 3.75$$

Challenges

Conclusion

# **SATE** Estimation

$$SATE = \left(\frac{2}{8} * 5\right) + \left(\frac{2}{8} * 3\right) + \left(\frac{2}{8} * 4\right) + \left(\frac{2}{8} * 3\right)$$
$$= 3.75$$

The blocked and unblocked estimates are the same here because Pr(Treatment) is constant across blocks and blocks are all the same size.

# **SATE** Estimation

- We can use weighted regression to estimate this in an OLS framework
- Weights are the inverse prob. of being treated w/in block
  - Pr(Treated) by block: p<sub>ij</sub> = Pr(D<sub>i</sub> = 1|J = j)
    Weight (Treated): w<sub>ij</sub> = 1/p<sub>ij</sub>
    Weight (Control): w<sub>ij</sub> = 1/(1-p<sub>ij</sub>)

# **Statistical Properties II**

Complete randomization:

$$\widehat{SE}_{SATE} = \sqrt{\frac{\widehat{Var}(Y_0)}{n_0} + \frac{\widehat{Var}(Y_1)}{n_1}}$$

Block randomization:

$$\widehat{SE}_{SATE_{blocked}} = \sqrt{\sum_{1}^{J} \left(\frac{n_{j}}{n}\right)^{2} \widehat{Var}(SATE_{j})}$$

# **Statistical Properties II**

Complete randomization:

$$\widehat{SE}_{SATE} = \sqrt{\frac{\widehat{Var}(Y_0)}{n_0} + \frac{\widehat{Var}(Y_1)}{n_1}}$$

Block randomization:

$$\widehat{SE}_{SATE_{blocked}} = \sqrt{\sum_{1}^{J} \left(\frac{n_{j}}{n}\right)^{2} \widehat{Var}(SATE_{j})}$$

When is the blocked design more efficient?

## **Practicalities**

- Blocked randomization only works in exactly the same situations where stratified sampling works
  - Need to observe covariates pre-treatment in order to block on them
  - Work best in a panel context
- In a single cross-sectional design that might be challenging

■ Some software can block "on the fly"

Theory

Challenges

Conclusion

# Questions?

Conclusion

- 1 History and Logic of Experiments
- 2 From Theory to Design
  Translating Hypotheses into Designs
  Assessing Quality
  Common Paradigms and Examples
  More Advanced Designs
- 3 Challenges and Criticisms
   Participant Recruitment
   Attention and Satisficing
   Use of Covariates

#### 4 Conclusion

Theory

Challenges

Conclusion

Theory

Challenges

Conclusion

# Quiz time!

Theory

Challenges

Conclusion

# Compliance

#### What is compliance?

Theory

Challenges

Conclusion

# Compliance

- What is compliance?
- How can we analyze experimental data when there is noncompliance?

# Balance testing

What does randomization ensure about the composition of treatment groups?

# Balance testing

- What does randomization ensure about the composition of treatment groups?
- What can we do if we find a covariate imbalance between groups?

# Balance testing

- What does randomization ensure about the composition of treatment groups?
- 2 What can we do if we find a covariate imbalance between groups?
- 3 How can we avoid this problem entirely?

Conclusion

#### **Nonresponse and Attrition**

#### Do we care about outcome nonresponse in experiments?

### **Nonresponse and Attrition**

- Do we care about outcome nonresponse in experiments?
- How can we analyze experimental data when there is outcome nonresponse or post-treatment attrition?

Challenges

Conclusion

### Manipulation checks

# What is a manipulation check? What can we do with it?

Challenges

Conclusion

## Manipulation checks

- What is a manipulation check? What can we do with it?
- What do we do if some respondents "fail" a manipulation check?

Theory

Challenges

Conclusion

# Null effects

# • What should we do if we find our estimated $\widehat{SATE} = 0$ ?

# Null effects

- What should we do if we find our estimated  $\widehat{SATE} = 0$ ?
- What does it mean for an experiment to be underpowered?

# Null effects

- What should we do if we find our estimated  $\widehat{SATE} = 0$ ?
- What does it mean for an experiment to be underpowered?
- What can we do to reduce the probability of obtaining an (unwanted) "null effect"?

Challenges

Conclusion

#### Representativeness

Under what conditions is a design-based, probability sample necessary for experimental inference?

### Representativeness

- Under what conditions is a design-based, probability sample necessary for experimental inference?
- What kind of causal inferences can we draw from an experiment on a descriptively unrepresentative sample?

Challenges

Conclusion

## **Types of Experiments**

What are the three basic ways to construct experimental manipulations?

# **Types of Experiments**

- What are the three basic ways to construct experimental manipulations?
- What are some useful and common paradigms for survey experiments?

Theory

Challenges

Conclusion

# Conjoints

#### What are conjoints useful for?
History/Logic

Theory

Challenges

Conclusion

### Conjoints

- What are conjoints useful for?
- How do we correctly analyze a conjoint experimental design?

#### **Peer Review**

What should we do if a peer reviewer asks us to "control" for covariates in the analysis?

### **Peer Review**

- What should we do if a peer reviewer asks us to "control" for covariates in the analysis?
- What should we do if a peer reviewer asks us to include or exclude particular respondents from the analysis?

History/Logic

Theory

Challenges

Conclusion

### Questions?

By the end of the day, you should be able to...

**1** Explain how to analyze experiments quantitatively.

- **1** Explain how to analyze experiments quantitatively.
- 2 Explain how to design experiments that speak to relevant research questions and theories.

- 1 Explain how to analyze experiments quantitatively.
- 2 Explain how to design experiments that speak to relevant research questions and theories.
- 3 Evaluate the uses and limitations of several common survey experimental paradigms.

- 1 Explain how to analyze experiments quantitatively.
- 2 Explain how to design experiments that speak to relevant research questions and theories.
- 3 Evaluate the uses and limitations of several common survey experimental paradigms.
- 4 Identify practical issues that arise in the implementation of experiments and evaluate how to anticipate and respond to them.

History/Logic

Theory

Challenges

Conclusion

### Wrap-up

- Thanks to all of you!
- Stay in touch (t.leeper@lse.ac.uk)
- Good luck with your research!

History/Logic

Theory

Challenges

Conclusion

5 Protocols

- 6 Effect Heterogeneity
- 7 Advanced Designs
- 8 Beyond One-Shot Designs

#### **TESS** has "Open Protocols"

Protocol is the complete planning document for how to design, implement, and analyze an experiment.<sup>25</sup>

- 1 Theory/hypotheses
- 2 Instrumentation
  - Manipulation(s)
  - Outcome(s)
  - Covariate(s)
  - Manipulation check(s)
- 3 Sampling
- 4 Implementation
- 5 Analysis

<sup>&</sup>lt;sup>25</sup>Thomas J. Leeper. 2011. "The Use of Protocol in the Design and Reporting of Experiments." *The Experimental Political Scientist.* 

 Be clear to yourself what you're trying to do before you do it

- Be clear to yourself what you're trying to do before you do it
- Assess the literature for best practices

- Be clear to yourself what you're trying to do before you do it
- Assess the literature for best practices
- Highlight areas in need of pilot testing

- Be clear to yourself what you're trying to do before you do it
- Assess the literature for best practices
- Highlight areas in need of pilot testing
- Economize questionnaire development

- Be clear to yourself what you're trying to do before you do it
- Assess the literature for best practices
- Highlight areas in need of pilot testing
- Economize questionnaire development
- Study preregistration

#### **Detecting Effect Heterogeneity**

Always block if you expect heterogeneity!

- QQ-plots: Suggestive evidence
- Regression using treatment-by-covariate interactions

#### **Detecting Effect Heterogeneity**

Always block if you expect heterogeneity!

- QQ-plots: Suggestive evidence
- Regression using treatment-by-covariate interactions
- (Replication and meta-analysis)

More Designs

### Suggestive Evidence

We can never know  $Var(TE_i)!$ 

### Suggestive Evidence

#### We can never know $Var(TE_i)!$ But...

Quantile-quantile plots

# Suggestive Evidence

We can never know  $Var(TE_i)!$  But...

- Quantile-quantile plots
  - Compare the distribution of  $Y_0$ 's to distribution of  $Y_1$ 's
  - If homogeneity, a vertical shift in  $Y_1$ 's
  - $\blacksquare$  If heterogeneity, a slope  $\neq 1$

# Suggestive Evidence

We can never know  $Var(TE_i)!$  But...

- Quantile-quantile plots
  - Compare the distribution of  $Y_0$ 's to distribution of  $Y_1$ 's
  - If homogeneity, a vertical shift in  $Y_1$ 's
  - $\blacksquare$  If heterogeneity, a slope  $\neq 1$
  - Equality of variance tests
    - If homogeneity, variance should be equal
    - If heterogeneity, variances should differ

More Designs

### **QQ** Plots

```
# y_0 data
set.seed(1)
n <- 200
y0 <- rnorm(n) + rnorm(n, 0.2)
# y_1 data (homogeneous effects)
y1a <- y0 + 2 + rnorm(n, 0.2)
# y_1 data (heterogeneous effects)
y1b <- y0 + rep(0:1, each = n/2) + rnorm(n, 0.2)
qqplot(y0, y1a, pch=19, xlim=c(-3,5), ylim=c(-3,5), asp=1)
curve((x), add = TRUE)
qqplot(y0, y1b, pch=19, xlim=c(-3,5), ylim=c(-3,5), asp=1)
curve((x), add = TRUE)</pre>
```





### **Equality of Variance tests**

```
> var.test(y0, y1a)
```

F test to compare two variances

### **Equality of Variance tests**

```
> var.test(y0, y1b)
```

F test to compare two variances

Protocols

More Designs

#### Questions?

Advanced Designs

More Designs

### **Regression Estimation**

# Aside: Regression Adjustment in Experiments, Generally

- Recall the general advice that we do not need covariates in the regression to "control" for omitted variables (because there are none)
- Including covariates can reduce variance of our SATE by explaining more of the variation in Y

### Scenario

Imagine two regression models. Which is correct?

- Mean-difference estimate of SATE is "not significant"
- Regression estimate of SATE, controlling for sex, age, and education, is "significant"

### Scenario

Imagine two regression models. Which is correct?

- Mean-difference estimate of SATE is "not significant"
- Regression estimate of SATE, controlling for sex, age, and education, is "significant"

This is a small-sample dynamic, so make these decisions pre-analysis!

#### **Treatment-Covariate Interactions**

- The regression paradigm allows us to estimate CATEs using interaction terms
  - X is an indicator for treatment
  - $\blacksquare$  *M* is an indicator for possible moderator
## **Treatment-Covariate Interactions**

- The regression paradigm allows us to estimate CATEs using interaction terms
  - X is an indicator for treatment
  - $\blacksquare$  *M* is an indicator for possible moderator
- SATE:  $Y = \beta_0 + \beta_1 X + e$

# **Treatment-Covariate Interactions**

The regression paradigm allows us to estimate CATEs using interaction terms

 X is an indicator for treatment
 M is an indicator for possible moderator

SATE: Y = β<sub>0</sub> + β<sub>1</sub>X + e
CATEs:

 $Y = \beta_0 + \beta_1 X + \beta_2 M + \beta_3 X * M + e$ 

### **Treatment-Covariate Interactions**

The regression paradigm allows us to estimate CATEs using interaction terms

 X is an indicator for treatment
 M is an indicator for possible moderator

SATE: Y = β<sub>0</sub> + β<sub>1</sub>X + e
CATEs:

$$Y = \beta_0 + \beta_1 X + \beta_2 M + \beta_3 X * M + e$$

Homogeneity:  $\beta_3 = 0$ Heterogeneity:  $\beta_3 \neq 0$ 

More Designs

5 Protocols

- 6 Effect Heterogeneity
- 7 Advanced Designs
- 8 Beyond One-Shot Designs

# **Beyond One-shot Designs**

- Surveys can be used as a measurement instrument for a field treatment or a manipulation applied in a different survey panel wave
  - 1 Measure effect duration in two-wave panel
  - 2 Solicit pre-treatment outcome measures in a two-wave panel
  - 3 Measure effects of field treatment in post-test only design
  - 4 Randomly encourage field treatment in pre-test and measure effects in post-test

# **Beyond One-shot Designs**

- Surveys can be used as a measurement instrument for a field treatment or a manipulation applied in a different survey panel wave
  - 1 Measure effect duration in two-wave panel
  - 2 Solicit pre-treatment outcome measures in a two-wave panel
  - 3 Measure effects of field treatment in post-test only design
  - 4 Randomly encourage field treatment in pre-test and measure effects in post-test
- Problems? Compliance & nonresponse

# I. Effect Duration

### Use a two- (or more-) wave panel to measure duration of effects

- T1: Treatment and outcome measurement
- T2+: Outcome measurement
- Two main concerns
  - Attrition
  - Panel conditioning

# II. Within-Subjects Designs

- Estimate treatment effects as a difference-in-differences
- Instead of using the post-treatment mean-difference in Y to estimate the causal effect, use the difference in pre-post differences for the two groups:

$$(\hat{Y}_{0,t+1} - \hat{Y}_{0,t}) - (\hat{Y}_{j,t+1} - \hat{Y}_{j,t})$$

# II. Within-Subjects Designs

- Estimate treatment effects as a difference-in-differences
- Instead of using the post-treatment mean-difference in Y to estimate the causal effect, use the difference in pre-post differences for the two groups:

$$(\hat{Y}_{0,t+1} - \hat{Y}_{0,t}) - (\hat{Y}_{j,t+1} - \hat{Y}_{j,t})$$

 Advantageous because variance for paired samples decreases as correlation between t<sub>0</sub> and t<sub>1</sub> observations increases

More Designs



More Designs













As soon as time comes into play, we have to worry about threats to validity.  $^{\rm 26}$ 

As soon as time comes into play, we have to worry about threats to validity.  $^{\rm 26}$ 

1 History (simultaneous cause)

As soon as time comes into play, we have to worry about threats to validity.  $^{\rm 26}$ 

- 1 History (simultaneous cause)
- 2 Maturation (time trends)

As soon as time comes into play, we have to worry about threats to validity.  $^{\rm 26}$ 

- 1 History (simultaneous cause)
- 2 Maturation (time trends)
- **3** Testing (observation changes respondents)

As soon as time comes into play, we have to worry about threats to validity.  $^{\rm 26}$ 

- 1 History (simultaneous cause)
- 2 Maturation (time trends)
- **3** Testing (observation changes respondents)
- 4 Instrumentation (changing operationalization)

As soon as time comes into play, we have to worry about threats to validity.  $^{\rm 26}$ 

- 1 History (simultaneous cause)
- 2 Maturation (time trends)
- **3** Testing (observation changes respondents)
- 4 Instrumentation (changing operationalization)
- **5** Instability (measurement error)

As soon as time comes into play, we have to worry about threats to validity.  $^{\rm 26}$ 

- 1 History (simultaneous cause)
- 2 Maturation (time trends)
- 3 Testing (observation changes respondents)
- 4 Instrumentation (changing operationalization)
- 5 Instability (measurement error)
- 6 Attrition

<sup>&</sup>lt;sup>26</sup>Shadish, Cook, and Campbell (2002)

More Designs

### **III. Randomized Field Treatment**

### Examples:

 Citizens randomly sent a letter by post encouraging them to reduce water usage

- Citizens randomly sent a letter by post encouraging them to reduce water usage
- 2 Different local media markets randomly assigned to receive different advertising

- Citizens randomly sent a letter by post encouraging them to reduce water usage
- 2 Different local media markets randomly assigned to receive different advertising
- Survey is used to measure outcomes, when treatment assignment is already known

- Citizens randomly sent a letter by post encouraging them to reduce water usage
- 2 Different local media markets randomly assigned to receive different advertising
- Survey is used to measure outcomes, when treatment assignment is already known
- Issues

- Citizens randomly sent a letter by post encouraging them to reduce water usage
- 2 Different local media markets randomly assigned to receive different advertising
- Survey is used to measure outcomes, when treatment assignment is already known
- Issues
  - Nonresponse
  - Noncompliance

# **IV. Treatment Encouragement**

#### Design:

- T1: Encourage treatment
- T2: Measure effects
- Examples:
  - 1 Albertson and Lawrence<sup>27</sup>

<sup>&</sup>lt;sup>27</sup>Albertson & Lawrence. 2009. "After the Credits Roll." American Politics Research 37(2): 275–300. 10.1177/1532673X08328600.

# **IV. Treatment Encouragement**

#### Design:

- T1: Encourage treatment
- T2: Measure effects
- Examples:
  - 1 Albertson and Lawrence<sup>27</sup>

#### Issues

<sup>&</sup>lt;sup>27</sup> Albertson & Lawrence. 2009. "After the Credits Roll." American Politics Research 37(2): 275–300. 10.1177/1532673X08328600.

# **IV. Treatment Encouragement**

#### Design:

- T1: Encourage treatment
- T2: Measure effects
- Examples:
  - 1 Albertson and Lawrence<sup>27</sup>

#### Issues

- Nonresponse
- Noncompliance

<sup>&</sup>lt;sup>27</sup>Albertson & Lawrence. 2009. "After the Credits Roll." American Politics Research 37(2): 275–300. 10.1177/1532673X08328600.