
Tips for Working Reproducibly

Thomas J. Leeper

Senior Visiting Fellow in Methodology
London School of Economics and Political Science

9 May 2019

Tools We’ll See Today
R, RStudio

https://cran.r-project.org/
https://www.rstudio.com/

make (and other command line tools)
https:
//cran.r-project.org/bin/windows/Rtools/

git
git (https://git-scm.com/)
github (https://github.com/)
gitkraken (https://www.gitkraken.com/)

Collaboration software
overleaf (https://www.overleaf.com/)
dropbox (https://www.dropbox.com/)
google drive (https://drive.google.com/)

https://cran.r-project.org/
https://www.rstudio.com/
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
https://git-scm.com/
https://github.com/
https://www.gitkraken.com/
https://www.overleaf.com/
https://www.dropbox.com/
https://drive.google.com/

Introductions

Me:
Thomas
Political Scientist, Methodology Department
Experimental and computational methods
R

You:
Name
Field/Department
Methods
Tools/Software

Learning Objectives

1 Define reproducibility and replicability

2 Understand how to organize a reproducible
research project

3 Recognize different approaches to
reproducibility and tools for implementing
various reproducible workflows

4 Understand how to collaborate reproducibly

Some Semantics

Reproduction: recreating output from a
shared input

Replication: creating new output from new
input

https://thomasleeper.com/2015/05/
open-science-language/

https://thomasleeper.com/2015/05/open-science-language/
https://thomasleeper.com/2015/05/open-science-language/

Beyond Scope for Today

Verification

Data Transparency

Replication

Non-computational reproducibility
Software and hardware versioning
Deterministic computing
Interpretations

Lewis and Clark

Jefferson’s instructions:

The object of your mission is to explore the
Missouri river, & such principal stream of
it, as, by its course & communication with
the water of the Pacific ocean may offer the
most direct & practicable water communi-
cation across this continent, for the pur-
poses of commerce

Lewis and Clark

Jefferson’s instructions:

The object of your mission is to explore the
Missouri river, & such principal stream of
it, as, by its course & communication with
the water of the Pacific ocean may offer the
most direct & practicable water communi-
cation across this continent, for the pur-
poses of commerce

Beginning at the mouth of the Missouri,
you will take observations of latitude and
longitude at all remarkable points on the
river. . .

The courses of the river between these
points of observation may be supplied by
the compass, the logline & by time, cor-
rected by the observations themselves. The
variations of the compass too, in different
places should be noticed

Beginning at the mouth of the Missouri,
you will take observations of latitude and
longitude at all remarkable points on the
river. . .

The courses of the river between these
points of observation may be supplied by
the compass, the logline & by time, cor-
rected by the observations themselves. The
variations of the compass too, in different
places should be noticed

Your observations are to be taken with great pains
& accuracy to be entered distinctly, & intelligibly
for others as well as yourself, to comprehend all the
elements necessary, with the aid of the usual tables
to fix the latitude & longitude of the places at which
they were taken, & are to be rendered to the war of-
fice, for the purpose of having the calculations made
concurrently by proper persons within the U.S. Sev-
eral copies of these as well as of your other notes,
should be made at leisure times, & put into the care
of the most trustworthy of your attendants, to guard
by multiplying them against the accidental losses to
which they will be exposed. A further guard would
be that one of these copies be written on the paper
of the birch, as less liable to injury from damp than
common paper

. . . and finally:

To provide, on the accident of your death,
against anarchy, dispersion & the conse-
quent danger to your party, and total failure
of the enterprise, you are hereby authorised,
by any instrument signed & written in your
own hand, to name the person among them
who shall succeed to the command

1 Organizing Things

2 Building Things

3 Keeping Things

4 Hands-On

Activity!
How do you organize your files for a project?

Wait, but why do we care?

If we’re going to be transparent in the end (e.g., at
verification or data archiving stage), what do we
need to provide?

A well-organized, reproducible analysis!

Wait, but why do we care?

If we’re going to be transparent in the end (e.g., at
verification or data archiving stage), what do we
need to provide?

A well-organized, reproducible analysis!

Wait, but why do we care?

If we’re going to be transparent in the end (e.g., at
verification or data archiving stage), what do we
need to provide?

A well-organized, reproducible analysis!

So rather than make that an annoying, post-hoc
exercise related to publication, try to get organized
and stay organized throughout your project from the
very beginning.

The single most important part of reproducibility is
naming things!

What makes up the ideal
reproducible research product?

Gandrud’s template
rOpenSci’s “Research Compendium”
Project TIER
AJPS Replication/Verification Policy

Root

Rep-Res-ExampleProject1

Paper.Rnw

Slideshow.Rnw

Website.Rnw

Main.bib
Data

MainData.csv

Makefile

MergeData.R

Gather1.R

MainData_VariableDescriptions.md

README.Rmd

Analysis

GoogleVisMap.R

ScatterUDSFert.R
README.md

project
|- DESCRIPTION # project metadata and dependencies
|- README.md # top-level description of content
|
|- data/ # raw data, not changed once created
| +- my_data.csv # data files in open formats
|
|- analysis/ # any programmatic code
| +- my_scripts.R # R code used to analyse data

Don’t be this guy:

AJPS

https://ajps.org/ajps-replication-policy/

https://ajps.org/ajps-replication-policy/

mkdir code

mkdir data

mkdir figures

echo # My Project > README.md

File names

Which of these do we like best?

PhD Comics style

Sequential version numbers

Datestamps

None of the above (Git!)

File names

Which of these do we like best?

PhD Comics style

Sequential version numbers

Datestamps

None of the above (Git!)

Dates

paper03-05-18.docx
paper3-5-18.docx
paper05-03-18.docx
paper5-3-18.docx
paper18-3-5.docx
paper18-5-3.docx
paper03-05.docx
paper05-03.docx
paper3-5.docx
paper5-3.docx

ISO 8601
There is only one way to write dates:

YYYY-MM-DD

Why?

Unambiguous

Sortable by most-to-least important digits

Language agnostic

Universal

Case

TitleCase

camelCase

snake_case

Naturalcase

(Anything with spaces)

Everything you do should be plain text*

* Exceptions to this are images (sometimes)

Everything you do should be plain text*

* Exceptions to this are images (sometimes)

https://simplystatistics.org/2017/06/13/

the-future-of-education-is-plain-text/

https://simplystatistics.org/2017/06/13/the-future-of-education-is-plain-text/
https://simplystatistics.org/2017/06/13/the-future-of-education-is-plain-text/

Additionally. . .

Easy to use in version control

Easy to dynamically update as part of an
analysis “pipeline”

File Good format(s)
Document .md, .tex, .Rmd, .Rnw
Presentation .tex, .Rmd, .Rnw

Code .R, .Rmd, .py, .do, .ado
Data .tsv, .csv

Codebook .txt
Citations .bib
Images .svg, .pdf, .png

References .bib

Reference Management

Never type/format citations manually!

Use reference management software
Zotero (https://www.zotero.org/)
Jabref (http://www.jabref.org/)

Develop a workflow where these are
automatically generated

https://www.zotero.org/
http://www.jabref.org/

@Article{Berinsky2017,
author = {Berinsky, Adam J.},
title = {Measuring Public Opinion with Surveys},
journal = {Annual Review of Political Science},
year = {2017},
volume = {20},
number = {1},
pages = {309--329},
month = {may},
doi = {10.1146/annurev-polisci-101513-113724}

}

Is it possible to take the plain text ideology too far?

Questions?

1 Organizing Things

2 Building Things

3 Keeping Things

4 Hands-On

Activity!
What’s your analytic workflow? How do you get
results into a paper, poster, or presentation?

My First Workflow

1 Make figure/table/analysis in R
2 Copy/paste into Word document
3 Adjust figure/table numbering
4 Double check references
5 Save as PDF
6 Change something in 1, repeat 2-5
7 Get feedback (f*ck!!), repeat 1-5
8 Get reviews (f*ck!!!!!), repeat 1-5
9 Repeat 7 (f*ck!!!!!!!!!!!!!!!), repeat 1-5

My First Workflow

1 Make figure/table/analysis in R

2 Copy/paste into Word document
3 Adjust figure/table numbering
4 Double check references
5 Save as PDF
6 Change something in 1, repeat 2-5
7 Get feedback (f*ck!!), repeat 1-5
8 Get reviews (f*ck!!!!!), repeat 1-5
9 Repeat 7 (f*ck!!!!!!!!!!!!!!!), repeat 1-5

My First Workflow

1 Make figure/table/analysis in R
2 Copy/paste into Word document

3 Adjust figure/table numbering
4 Double check references
5 Save as PDF
6 Change something in 1, repeat 2-5
7 Get feedback (f*ck!!), repeat 1-5
8 Get reviews (f*ck!!!!!), repeat 1-5
9 Repeat 7 (f*ck!!!!!!!!!!!!!!!), repeat 1-5

My First Workflow

1 Make figure/table/analysis in R
2 Copy/paste into Word document
3 Adjust figure/table numbering

4 Double check references
5 Save as PDF
6 Change something in 1, repeat 2-5
7 Get feedback (f*ck!!), repeat 1-5
8 Get reviews (f*ck!!!!!), repeat 1-5
9 Repeat 7 (f*ck!!!!!!!!!!!!!!!), repeat 1-5

My First Workflow

1 Make figure/table/analysis in R
2 Copy/paste into Word document
3 Adjust figure/table numbering
4 Double check references

5 Save as PDF
6 Change something in 1, repeat 2-5
7 Get feedback (f*ck!!), repeat 1-5
8 Get reviews (f*ck!!!!!), repeat 1-5
9 Repeat 7 (f*ck!!!!!!!!!!!!!!!), repeat 1-5

My First Workflow

1 Make figure/table/analysis in R
2 Copy/paste into Word document
3 Adjust figure/table numbering
4 Double check references
5 Save as PDF
6 Change something in 1, repeat 2-5

7 Get feedback (f*ck!!), repeat 1-5
8 Get reviews (f*ck!!!!!), repeat 1-5
9 Repeat 7 (f*ck!!!!!!!!!!!!!!!), repeat 1-5

My First Workflow

1 Make figure/table/analysis in R
2 Copy/paste into Word document
3 Adjust figure/table numbering
4 Double check references
5 Save as PDF
6 Change something in 1, repeat 2-5
7 Get feedback (f*ck!!), repeat 1-5

8 Get reviews (f*ck!!!!!), repeat 1-5
9 Repeat 7 (f*ck!!!!!!!!!!!!!!!), repeat 1-5

My First Workflow

1 Make figure/table/analysis in R
2 Copy/paste into Word document
3 Adjust figure/table numbering
4 Double check references
5 Save as PDF
6 Change something in 1, repeat 2-5
7 Get feedback (f*ck!!), repeat 1-5
8 Get reviews (f*ck!!!!!), repeat 1-5

9 Repeat 7 (f*ck!!!!!!!!!!!!!!!), repeat 1-5

My First Workflow

1 Make figure/table/analysis in R
2 Copy/paste into Word document
3 Adjust figure/table numbering
4 Double check references
5 Save as PDF
6 Change something in 1, repeat 2-5
7 Get feedback (f*ck!!), repeat 1-5
8 Get reviews (f*ck!!!!!), repeat 1-5
9 Repeat 7 (f*ck!!!!!!!!!!!!!!!), repeat 1-5

Workflows as DAGs

Reproducibility means executing a DAG

DAG
Directed
Acyclic
Graph

Files are nodes; workflows are arrows

Example: https:
//github.com/leeper/make-example

https://github.com/leeper/make-example
https://github.com/leeper/make-example

What’s wrong with point-and-click?

Lose track of the DAG
Won’t comply with DA-RT verification policies
You will make mistakes!
Eventually, you will have wasted your entire life
manually fixing references, figure/table
cross-references, and making sure that all of
your numbers are correctly rounded and
p-values have the correct number of stars next
to them!

What’s wrong with point-and-click?

Lose track of the DAG

Won’t comply with DA-RT verification policies
You will make mistakes!
Eventually, you will have wasted your entire life
manually fixing references, figure/table
cross-references, and making sure that all of
your numbers are correctly rounded and
p-values have the correct number of stars next
to them!

What’s wrong with point-and-click?

Lose track of the DAG
Won’t comply with DA-RT verification policies

You will make mistakes!
Eventually, you will have wasted your entire life
manually fixing references, figure/table
cross-references, and making sure that all of
your numbers are correctly rounded and
p-values have the correct number of stars next
to them!

What’s wrong with point-and-click?

Lose track of the DAG
Won’t comply with DA-RT verification policies
You will make mistakes!

Eventually, you will have wasted your entire life
manually fixing references, figure/table
cross-references, and making sure that all of
your numbers are correctly rounded and
p-values have the correct number of stars next
to them!

What’s wrong with point-and-click?

Lose track of the DAG
Won’t comply with DA-RT verification policies
You will make mistakes!
Eventually, you will have wasted your entire life
manually fixing references, figure/table
cross-references, and making sure that all of
your numbers are correctly rounded and
p-values have the correct number of stars next
to them!

Four Basic Workflows

1 Do everything in one file

2 Master file calls code for one-file-per-output

3 make (“code within workflow”)

4 knitr/rmarkdown (“workflow within code”)

Four Basic Workflows

1 Do everything in one file

2 Master file calls code for one-file-per-output

3 make (“code within workflow”)

4 knitr/rmarkdown (“workflow within code”)

Four Basic Workflows

1 Do everything in one file

2 Master file calls code for one-file-per-output

3 make (“code within workflow”)

4 knitr/rmarkdown (“workflow within code”)

Four Basic Workflows

1 Do everything in one file

2 Master file calls code for one-file-per-output

3 make (“code within workflow”)

4 knitr/rmarkdown (“workflow within code”)

Four Basic Workflows

1 Do everything in one file

2 Master file calls code for one-file-per-output

3 make (“code within workflow”)

4 knitr/rmarkdown (“workflow within code”)

Everything in One File
Brexit Deservingnes Experiment Analysis
setwd("c:/users/thomas/dropbox/brexitdeservingness/")

load data
dat <- rio::import("data/LSE_Hobolt_May18_Client.sav")
stopifnot(identical(dim(dat), c(3273L, 62L)))

Regression analysis: perceived deservingness
stargazer::stargazer(

reduced model (only leavers and remainers) with interaction
lm(opinion ~ identity * condition, data = subset(dat, identity %in% c("A Leaver", "A Remainer"))),
type = "tex",
out = "figures/results-deservingness.tex",
star.char = c("*"),
star.cutoffs = c(0.05),
notes = c("* $p<0.05$"),
notes.append = FALSE,
model.numbers = FALSE,
float = FALSE,
digits = 2,
align = TRUE

)

One-File-Per-Output
Preference Trial Experiment Analysis
Thomas J. Leeper
2018-06-25
#setwd("C:/Users/Thomas/Dropbox/KnowledgeGaps")

code
library("car")
library("xtable")
library("GK2011")
source("Analysis/functions.R")

recoding
source("Analysis/experiment_cleaning.R")

demographics
source("Analysis/experiment_demographics.R", echo = TRUE)

Main analysis
source("Analysis/experiment_knowledge.R")

Appendix
source("Analysis/experiment_appendix.R")

What’s missing from these workflows?

make with a makefile

all: paper.pdf

figure/figure1.pdf: R/figure1.R data/mtcars.csv
Rscript R/figure1.R

table/table1.tex: R/table1.R data/mtcars.csv
Rscript R/table1.R

paper.pdf: paper.tex figure/figure1.pdf table/table1.tex
pdflatex $<
pdflatex $<
bibtex $<
pdflatex $<

Dynamic Documents
(Rmarkdown)

The dynamic documents landscape is evolving
very, very rapidly:

Early 2000s: Sweave
2010’s: knitr
Ongoing: Rmarkdown

Embed code (R or otherwise) inside a
manuscript that outputs:

Word (.docx)
HTML
LaTeX/PDF
HTML or PPT slides

Dynamic Documents
(Rmarkdown)

The dynamic documents landscape is evolving
very, very rapidly:

Early 2000s: Sweave
2010’s: knitr
Ongoing: Rmarkdown

Embed code (R or otherwise) inside a
manuscript that outputs:

Word (.docx)
HTML
LaTeX/PDF
HTML or PPT slides

Rmarkdown
1 YAML metadata header

title: My Manuscript
author: Thomas J. Leeper

2 Document contents in markdown
A header
A subhead
This is my manuscript, **bold** and *italic*.

3 Code in “code chunks”:
‘‘‘{r chunk1}
R code
hist(rnorm(1000))
‘‘‘

- title: My Manuscript
- author: Thomas J. Leeper
- date: 2017-09-21
- output: pdf_document

This is my manuscript.

‘‘‘{r chunk1}
R code
hist(rnorm(1000))
‘‘‘

Markdown Basics

Markdown is a very simple markup language for
formatting simple texts:

italics italics
bold bold
‘preformatted‘ preformatted
Heading Heading Level 1
Heading Heading Level 2
Heading Heading Level 3
[link](https://google.com) link

https://google.com

Chunk Options

‘‘‘{r chunk1, eval=TRUE, echo=TRUE}
2 + 2
‘‘‘

‘‘‘{r chunk2, eval=TRUE, echo=FALSE}
2 + 2
‘‘‘

‘‘‘{r chunk3, echo=FALSE, results="hide"}
2 + 2
‘‘‘

Global Chunk Options

‘‘‘{r options, eval = TRUE, echo = FALSE}
library("knitr")
opts_chunk$set(echo = FALSE,

cache = TRUE,
message = FALSE)

‘‘‘

Basic Tables

‘‘‘{r table1, results = "asis"}
xtable::xtable(table(mtcars$cyl, mtcars$gear))

knitr::kable(head(mtcars))
‘‘‘

Regression Results Tables

‘‘‘{r table2, results = "asis"}
library("stargazer")
stargazer(

x1 <- lm(mpg ~ disp + wt,
data = mtcars),

x2 <- lm(mpg ~ disp + wt + vs,
data = mtcars),

header = FALSE
)
‘‘‘

Figures

‘‘‘{r fig1,
fig.cap = "Fuel Economy by Weight",
fig.height = 4,
fig.width = 6}

library("ggplot2")
ggplot(mtcars,

aes(x = wt,
y = mpg,
colour = factor(cyl))) +

geom_point()
‘‘‘

You can work in LaTeX, too!

You can work in LaTeX, too!

You can work in LaTeX, too!

How do you pick a workflow?

There is no one-size-fits-all workflow!

Decide what works for you for a given project
with particular collaborators

I use multiple workflows on different projects

Questions?

1 Organizing Things

2 Building Things

3 Keeping Things

4 Hands-On

Activity!
What tools do you use to store, share, and/or
archive your research materials?

Keeping things
Three ways of thinking about how you keep and
store your research materials:

1 Collaborating with yourself or others in the
future

Going back in time for long-lived projects
Verification at publication stage

2 Collaborating with others now
Collaborating simultaneously
Collaborating asynchronously

3 Collaborating with others after you die
Future reproducibility requests

Keeping things
Three ways of thinking about how you keep and
store your research materials:

1 Collaborating with yourself or others in the
future

Going back in time for long-lived projects
Verification at publication stage

2 Collaborating with others now
Collaborating simultaneously
Collaborating asynchronously

3 Collaborating with others after you die
Future reproducibility requests

Keeping things
Three ways of thinking about how you keep and
store your research materials:

1 Collaborating with yourself or others in the
future

Going back in time for long-lived projects
Verification at publication stage

2 Collaborating with others now
Collaborating simultaneously
Collaborating asynchronously

3 Collaborating with others after you die
Future reproducibility requests

Keeping things
Three ways of thinking about how you keep and
store your research materials:

1 Collaborating with yourself or others in the
future

Going back in time for long-lived projects
Verification at publication stage

2 Collaborating with others now
Collaborating simultaneously
Collaborating asynchronously

3 Collaborating with others after you die
Future reproducibility requests

Keeping things

Live Collaboration

Google Docs

Overleaf

Dropbox/Box/etc.

Email?

Other Collaboration

Active project:
Version control (git)
Backup: Dropbox,
GDrive, S3, Github

Archiving:
Dataverse, Zenodo,
Figshare, OSF

Keeping things

Live Collaboration
Google Docs

Overleaf

Dropbox/Box/etc.

Email?

Other Collaboration

Active project:
Version control (git)
Backup: Dropbox,
GDrive, S3, Github

Archiving:
Dataverse, Zenodo,
Figshare, OSF

Keeping things

Live Collaboration
Google Docs

Overleaf

Dropbox/Box/etc.

Email?

Other Collaboration
Active project:
Version control (git)
Backup: Dropbox,
GDrive, S3, Github

Archiving:
Dataverse, Zenodo,
Figshare, OSF

Keeping things

Live Collaboration
Google Docs

Overleaf

Dropbox/Box/etc.

Email?

Other Collaboration
Active project:
Version control (git)
Backup: Dropbox,
GDrive, S3, Github

Archiving:
Dataverse, Zenodo,
Figshare, OSF

Git

Git is “an open-source distributed version
control system”

Developed in 2005 by Linus Torvalds

Widely used in software development world

Why use Git for reproducibility?

Helps you keep and annotate snapshots of your
project over time

Better than renaming your files all the time
Better than using within-file VCS (e.g., Word)
Better than single-stream sharing (e.g., Dropbox)

Facilitates collaboration (incl. with future you)

It’s FOSS with lots of clients, tools, and
community support

Widely used in software development world

Why use Git for reproducibility?

Helps you keep and annotate snapshots of your
project over time

Better than renaming your files all the time
Better than using within-file VCS (e.g., Word)
Better than single-stream sharing (e.g., Dropbox)

Facilitates collaboration (incl. with future you)

It’s FOSS with lots of clients, tools, and
community support

Widely used in software development world

Why use Git for reproducibility?

Helps you keep and annotate snapshots of your
project over time

Better than renaming your files all the time
Better than using within-file VCS (e.g., Word)
Better than single-stream sharing (e.g., Dropbox)

Facilitates collaboration (incl. with future you)

It’s FOSS with lots of clients, tools, and
community support

Widely used in software development world

Why use Git for reproducibility?

Helps you keep and annotate snapshots of your
project over time

Better than renaming your files all the time
Better than using within-file VCS (e.g., Word)
Better than single-stream sharing (e.g., Dropbox)

Facilitates collaboration (incl. with future you)

It’s FOSS with lots of clients, tools, and
community support

Widely used in software development world

Version Control as Organization

Version control helps you stay organized

1 What’s important to keep around?
2 What’s not important to keep around?
3 What is all this crap?

Think “tracked changes” for all of your files

Save history of changes/versions
Experiment non-destructively
Collaborate

You’re probably already version controlling
informally!

Version Control as Organization

Version control helps you stay organized
1 What’s important to keep around?

2 What’s not important to keep around?
3 What is all this crap?

Think “tracked changes” for all of your files

Save history of changes/versions
Experiment non-destructively
Collaborate

You’re probably already version controlling
informally!

Version Control as Organization

Version control helps you stay organized
1 What’s important to keep around?
2 What’s not important to keep around?

3 What is all this crap?

Think “tracked changes” for all of your files

Save history of changes/versions
Experiment non-destructively
Collaborate

You’re probably already version controlling
informally!

Version Control as Organization

Version control helps you stay organized
1 What’s important to keep around?
2 What’s not important to keep around?
3 What is all this crap?

Think “tracked changes” for all of your files

Save history of changes/versions
Experiment non-destructively
Collaborate

You’re probably already version controlling
informally!

Version Control as Organization

Version control helps you stay organized
1 What’s important to keep around?
2 What’s not important to keep around?
3 What is all this crap?

Think “tracked changes” for all of your files

Save history of changes/versions
Experiment non-destructively
Collaborate

You’re probably already version controlling
informally!

Version Control as Organization

Version control helps you stay organized
1 What’s important to keep around?
2 What’s not important to keep around?
3 What is all this crap?

Think “tracked changes” for all of your files
Save history of changes/versions

Experiment non-destructively
Collaborate

You’re probably already version controlling
informally!

Version Control as Organization

Version control helps you stay organized
1 What’s important to keep around?
2 What’s not important to keep around?
3 What is all this crap?

Think “tracked changes” for all of your files
Save history of changes/versions
Experiment non-destructively

Collaborate

You’re probably already version controlling
informally!

Version Control as Organization

Version control helps you stay organized
1 What’s important to keep around?
2 What’s not important to keep around?
3 What is all this crap?

Think “tracked changes” for all of your files
Save history of changes/versions
Experiment non-destructively
Collaborate

You’re probably already version controlling
informally!

Version Control as Organization

Version control helps you stay organized
1 What’s important to keep around?
2 What’s not important to keep around?
3 What is all this crap?

Think “tracked changes” for all of your files
Save history of changes/versions
Experiment non-destructively
Collaborate

You’re probably already version controlling
informally!

Using Git

Git create a “local repository” file that you can
interact with using a number of tools

Command-line git
Git Bash
Git GUI
GitHub Desktop
RStudio (via “Projects”)
GitHub/Bitbucket/GitLab web interfaces
Gitkraken
git2r (R package)
. . .

git --version
git
git config --global user.name "My Name"
git config --global user.email "me@example.com"
git config --list

git init
git status
echo Hello world! > README.md
git add README.md
git status
git rm --cached README.md
git status
git add --all
git commit -m "my first commit!"
git status
git log

90% of What You Need

git add (stage) or git rm (unstage)
git commit
git status, git log
git remote

git push
git pull

git branch
git merge

Questions?

1 Organizing Things

2 Building Things

3 Keeping Things

4 Hands-On

Hands-On Practice

1 Work together on migrating a workflow

2 Dig through replication archives

3 Work individually or in pairs on making
workflow more reproducible

Let’s vote: What should we do?

Questions?

Learning Objectives

1 Define reproducibility and replicability

2 Understand how to organize a reproducible
research project

3 Recognize different approaches to
reproducibility and tools for implementing
various reproducible workflows

4 Understand how to collaborate reproducibly

Other stuff we didn’t get to

Project management and collaboration

Reproducible data gathering and protocols

Licensing and copyright

Data privacy and anonymization

Writing and distributing packages

Key Takeaways

Once you work reproducibly, you’ll never want
to go back to your old workflow

“Advanced” workflows (e.g., make, git) get
complicated — StackOverflow is your friend

Collaborators probably don’t know how to (or
want to) use these tools

Reproducibility is selfish first and for science
second!

Key Takeaways

Once you work reproducibly, you’ll never want
to go back to your old workflow

“Advanced” workflows (e.g., make, git) get
complicated — StackOverflow is your friend

Collaborators probably don’t know how to (or
want to) use these tools

Reproducibility is selfish first and for science
second!

Key Takeaways

Once you work reproducibly, you’ll never want
to go back to your old workflow

“Advanced” workflows (e.g., make, git) get
complicated — StackOverflow is your friend

Collaborators probably don’t know how to (or
want to) use these tools

Reproducibility is selfish first and for science
second!

Key Takeaways

Once you work reproducibly, you’ll never want
to go back to your old workflow

“Advanced” workflows (e.g., make, git) get
complicated — StackOverflow is your friend

Collaborators probably don’t know how to (or
want to) use these tools

Reproducibility is selfish first and for science
second!

Git Essentials

1 stage

2 commit

3 branch

4 merge

5 push and pull

Git Essentials

1 stage
stage: select files to be recorded in a “snapshot”
of the project
unstage: remove files from the snapshot (but not
from your computer)

2 commit

3 branch

4 merge

5 push and pull

Git Essentials

1 stage
2 commit

commit: record a permanent snapshot of the
staged files, labelled with a “commit message”
amend: modify (typically the most recent)
commit with new changes or commit message

3 branch

4 merge

5 push and pull

Git Essentials

1 stage

2 commit
3 branch

produce a complete local copy of the project where
changes can be made independently of the
“master” branch

4 merge

5 push and pull

Git Essentials

1 stage

2 commit

3 branch
4 merge

update a branch with changes from another local
branch (or a remote); you can change multiple
branches independently.

5 push and pull

Git Essentials

1 stage

2 commit

3 branch

4 merge
5 push and pull

push: send the project (any new commits) to a
remote server (like GitHub)
pull: grab new commits from a remote server

Git Essentials

1 stage

2 commit

3 branch

4 merge

5 push and pull

Hands-on practice!

Initializing a Project Structure

There’s no single best way to organize a project

But, some words of wisdom:
Put like with like
Avoid excessive hierarchy
Not everything needs to go into git
Steal others’ structures!

git status
git diff README.md
git diff HEAD README.md
git diff HEAD~1 README.md
git diff HEAD~2 README.md
git diff HEAD~3 README.md
git diff HEAD~20 README.md
git diff <commit hash> README.md
git diff <commit hash>

!! DANGER: Amend Commit !!

git status
git log --oneline
maybe add/rm files
git amend
enter the hell of vim

git config --global core.editor
"<executable> <options>"

Safe reversion

git status
git log --oneline
git revert <commit hash>
enter the hell of vim
or something else terrible
git revert --abort

!! DANGER: Unsafe reversion !!

The StackOverflow Question

https://stackoverflow.com/questions/927358/how-to-undo-the-last-commits-in-git

git status
echo "bad bad bad" > bad.txt
git status
echo bad.txt > .gitignore
git status
echo bad bad bad > bad1.txt
echo bad bad bad > bad2.txt
echo bad* > .gitignore
git status
git add bad1.txt -f
git status

Navigating History

git status
git log
git checkout <commit hash>
git status
ls
cat README.md
git checkout master

git status
git log
git checkout <commit hash>
git status
ls
echo aaaaaah!>manuscript.txt
git checkout master

Branches

Branches are local, parallel versions of your
entire project

Useful for multiple things:
Experimentation
Manuscript submissions
Collaboration

Source: https://www.atlassian.com/git/tutorials

https://www.atlassian.com/git/tutorials

Source: https://www.atlassian.com/git/tutorials

https://www.atlassian.com/git/tutorials

Simple branch and merge

git status
git checkout -b thomas
git status
do something
git add --all
git commit -m "thomas’s commit"
git checkout master
git branch
git log --graph --oneline
git merge thomas

GUIs

You can do everything in Git on the command
line

GUIs can be helpful for:
Exploring history
Visualizing branches
Confirming what you’re doing

Merge conflicts

git checkout -b thomas
git status
do something to README.md
git add --all
git commit -m "change on thomas"
git checkout master
do something to README.md
git add --all
git commit -m "change on master"
git merge thomas
git log

Remotes

A server (“cloud”) instance of the Git
repository

Useful for multiple things:
Collaboration
Transparency
Archiving/backups
Using web-based Git interfaces

Remotes

Three major players in cloud Git
GitHub
Atlassian Bitbucket
GitLab

Why choose one or the other?
Cost
Collaborators
Private repositories

git status
git remote add github
https://github.com/leeper/rt2
git remote
git remote set-url
git remote rename
git remote remove

git status
git push github master -u
git fetch github
git fetch github master
git checkout -b new-idea
git push github new-idea
git checkout master
git pull github master
git pull

git status
git tag -a v0.0.1 -m "v0.0.1"
git push --tags

git tag -d v0.0.1

Tags versus Branches

Branches are for working versions of project
Collaborator-specific branches
Submission-specific branches
Experimental or “bug fix” branches

Tags are for marking particular snapshots
Significant moments in project history
Journal submission or conference version
Formal “releases”

Collaboration

Technical aspects
Give collaborators access on GitHub (or wherever)
Work on separate branches
Merge agreed changes into master

Human factors aspects
Requires agreeing on workflow
Communication about what goes in “master”
Can feel awkward if moving from a Dropbox- or
email-based collaboration style

Try it with a partner!

1 Partner A create a GitHub repo; give Partner B access

2 Partner B should git fetch/git pull the repo

3 Partner B should create a local branch and git push

4 Partner A should git fetch the branch

5 Partner A should git merge the branch to master and
git push

6 Partner B should git pull from master

7 Both use git log to compare

	
	Organizing Things
	Building Things
	Keeping Things
	Hands-On
	Appendix
	Git
	Intermediate Git
	Branches & Remotes
	Collaboration

