
The CloudyR Project:
Statistical Cloud Computing
in R with Amazon and Google

Thomas J. Leeper

London School of Economics and Political Science

Twitter: @thosjleeper @cloudyrproject
GitHub: @leeper @cloudyr
thosjleeper@gmail.com

http://www.twitter.com/thosjleeper
http://www.twitter.com/cloudyrproject
http://www.github.com/leeper
http://www.github.com/cloudyr
mailto:thosjleeper@gmail.com


1 Motivation

2 Use Cases

3 Conclusion



1 Motivation

2 Use Cases

3 Conclusion



This talk is about cloud computing.

What is that?



Cloud computing

Big data is like teenage sex: everyone
talks about it, nobody really knows

how to do it, everyone thinks
everyone else is doing it, so everyone

claims they are doing it. . .

– Dan Ariely, 2013



Cloud computing
Big data is like teenage sex: everyone
talks about it, nobody really knows

how to do it, everyone thinks
everyone else is doing it, so everyone

claims they are doing it. . .

– Dan Ariely, 2013





Cloud Computing 101

Cloud computing refers to a variety of ideas:

Software-as-a-Service (SaaS)

Platform-as-a-Service (PaaS)

Infrastructure-as-a-Service (IaaS)

All of these shift computational tasks from a local
machine to a server.



Who are the major players?



Why cloud computing?

Storage
Memory
Explicit parallelism
Security/Collaboration
Reproducibility
Data pipelines
SaaS



Why cloud computing?

Storage

Memory
Explicit parallelism
Security/Collaboration
Reproducibility
Data pipelines
SaaS



Why cloud computing?

Storage
Memory

Explicit parallelism
Security/Collaboration
Reproducibility
Data pipelines
SaaS



Why cloud computing?

Storage
Memory
Explicit parallelism

Security/Collaboration
Reproducibility
Data pipelines
SaaS



Why cloud computing?

Storage
Memory
Explicit parallelism
Security/Collaboration

Reproducibility
Data pipelines
SaaS



Why cloud computing?

Storage
Memory
Explicit parallelism
Security/Collaboration
Reproducibility

Data pipelines
SaaS



Why cloud computing?

Storage
Memory
Explicit parallelism
Security/Collaboration
Reproducibility
Data pipelines

SaaS



Why cloud computing?

Storage
Memory
Explicit parallelism
Security/Collaboration
Reproducibility
Data pipelines
SaaS



Why cloud computing?

This Laptop
Intel Core i7
(4 cores)
8 GB
memory
100 GB of
usable
storage

What you can get on AWS
Equivalent AWS instance
costs $0.0928/hour
96 cores and 384 GB
memory costs $4.608/hour
In theory unlimited number
of instances
Storage is basically unlimited

S3: $0.023/GB-month
EBS: $0.10/GB-month



Simplest Use Case:
Execute Code in the Cloud

1 Reserve an “instance” in the cloud

2 Fire up your favorite statistical software

3 Execute code as if you were running locally

4 Retrieve results



Why aren’t researchers using cloud
computing resources?

Statisticians and scientists may not know
anything about how to set up

high-performance computing infrastructure!

I am one of those people!



I started using SPSS in 1979, while studying
cognitive psychology at the Leiden Univer-
sity. In these days I had to program SPSS-
syntax on punched cards. The worst thing
was not this card-interface, but it was the
IBM job control language you had to in-
clude: total gibberish language that was
needed to make your SPSS-job run on a
mainframe somewhere in one of the univer-
sity buildings.

Source: Gerard van Meurs,
https://50-years-spss.com/user-stories/

https://50-years-spss.com/user-stories/


Why aren’t researchers using cloud
computing resources?

Statisticians and scientists may not know
anything about how to set up

high-performance computing infrastructure!

I am one of those people!



Why aren’t researchers using cloud
computing resources?

Statisticians and scientists may not know
anything about how to set up

high-performance computing infrastructure!

I am one of those people!



Why aren’t researchers using cloud
computing resources?

Statisticians and scientists may not know
anything about how to set up

high-performance computing infrastructure!

I am one of those people!



The CloudyR Project

Make R Cloudier!

Build easy-to-use,
dependency-free
software tools for
working with any
cloud service from R

Eventual goal: eval_cloud("script.R")



The CloudyR Project

Make R Cloudier!

Build easy-to-use,
dependency-free
software tools for
working with any
cloud service from R

Eventual goal: eval_cloud("script.R")



The CloudyR Project

Make R Cloudier!

Build easy-to-use,
dependency-free
software tools for
working with any
cloud service from R

Eventual goal: eval_cloud("script.R")



The CloudyR Project

Make R Cloudier!

Build easy-to-use,
dependency-free
software tools for
working with any
cloud service from R

Eventual goal: eval_cloud("script.R")



The CloudyR Project

100% volunteer effort

We receive no funding from any cloud service

We build free and open source tools

Many contributors!
Main AWS developer: Thomas Leeper
Main GCS developer: Mark Edmondson
Lots of PRs, bug reports, and documentation fixes
from many, many people



Why bother?

Cloud providers have broad language support:

AWS SDKs: Java .Net Node.js PHP Python
Ruby Go (C++)

GCS SDKs: Java .Net Node.js PHP Python
Ruby Go (C++)

But where’s R?



Why bother?

Cloud providers have broad language support:

AWS SDKs: Java .Net Node.js PHP Python
Ruby Go (C++)

GCS SDKs: Java .Net Node.js PHP Python
Ruby Go (C++)

But where’s R?



R is a first-class statistics and
data science language!



Building R packages for cloud
computing is difficult

Wrap an existing SDK
https://github.com/hrbrmstr/roto.s3
(Requires Python )
https://cran.r-project.org/package=AWR
(Requires Java )

Wrap the AWS Command Line Tools
AWS.tools, awsConnect
Requires a system dependency
Very difficult to maintain

Build native R packages using web APIs

https://github.com/hrbrmstr/roto.s3
https://cran.r-project.org/package=AWR
https://github.com/cran/AWS.tools
https://github.com/lalas/awsConnect/


Building R packages for cloud
computing is difficult

Wrap an existing SDK
https://github.com/hrbrmstr/roto.s3
(Requires Python )
https://cran.r-project.org/package=AWR
(Requires Java )

Wrap the AWS Command Line Tools
AWS.tools, awsConnect
Requires a system dependency
Very difficult to maintain

Build native R packages using web APIs

https://github.com/hrbrmstr/roto.s3
https://cran.r-project.org/package=AWR
https://github.com/cran/AWS.tools
https://github.com/lalas/awsConnect/


Building R packages for cloud
computing is difficult

Wrap an existing SDK
https://github.com/hrbrmstr/roto.s3
(Requires Python )
https://cran.r-project.org/package=AWR
(Requires Java )

Wrap the AWS Command Line Tools
AWS.tools, awsConnect
Requires a system dependency
Very difficult to maintain

Build native R packages using web APIs

https://github.com/hrbrmstr/roto.s3
https://cran.r-project.org/package=AWR
https://github.com/cran/AWS.tools
https://github.com/lalas/awsConnect/


Building R packages for cloud
computing is difficult

Wrap an existing SDK
https://github.com/hrbrmstr/roto.s3
(Requires Python )
https://cran.r-project.org/package=AWR
(Requires Java )

Wrap the AWS Command Line Tools
AWS.tools, awsConnect
Requires a system dependency
Very difficult to maintain

Build native R packages using web APIs

https://github.com/hrbrmstr/roto.s3
https://cran.r-project.org/package=AWR
https://github.com/cran/AWS.tools
https://github.com/lalas/awsConnect/




Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling

X

Cloud storage infrastructure (S3)

X

User account management (IAM)

X

Cloud computing tools (EC2)

X

Secure shell connections

X

High-level abstractions over the above



Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling

X

Cloud storage infrastructure (S3)

X

User account management (IAM)

X

Cloud computing tools (EC2)

X

Secure shell connections

X

High-level abstractions over the above



Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling X

Cloud storage infrastructure (S3)

X

User account management (IAM)

X

Cloud computing tools (EC2)

X

Secure shell connections

X

High-level abstractions over the above



Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling X

Cloud storage infrastructure (S3)

X

User account management (IAM)

X

Cloud computing tools (EC2)

X

Secure shell connections

X

High-level abstractions over the above



Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling X

Cloud storage infrastructure (S3) X

User account management (IAM)

X

Cloud computing tools (EC2)

X

Secure shell connections

X

High-level abstractions over the above



Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling X

Cloud storage infrastructure (S3) X
User account management (IAM)

X

Cloud computing tools (EC2)

X

Secure shell connections

X

High-level abstractions over the above



Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling X

Cloud storage infrastructure (S3) X
User account management (IAM) X

Cloud computing tools (EC2)

X

Secure shell connections

X

High-level abstractions over the above



Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling X

Cloud storage infrastructure (S3) X
User account management (IAM) X
Cloud computing tools (EC2)

X

Secure shell connections

X

High-level abstractions over the above



Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling X

Cloud storage infrastructure (S3) X
User account management (IAM) X
Cloud computing tools (EC2) X

Secure shell connections

X

High-level abstractions over the above



Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling X

Cloud storage infrastructure (S3) X
User account management (IAM) X
Cloud computing tools (EC2) X
Secure shell connections1

X

High-level abstractions over the above

1https://github.com/ropensci/ssh

https://github.com/ropensci/ssh


Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling X

Cloud storage infrastructure (S3) X
User account management (IAM) X
Cloud computing tools (EC2) X
Secure shell connections1 X

High-level abstractions over the above

1https://github.com/ropensci/ssh

https://github.com/ropensci/ssh


Simplest Use Case

End goal: eval_cloud("script.R")

What do we need in order to make that happen?

Low-level web API (HTTP) handling X

Cloud storage infrastructure (S3) X
User account management (IAM) X
Cloud computing tools (EC2) X
Secure shell connections1 X

High-level abstractions over the above

1https://github.com/ropensci/ssh

https://github.com/ropensci/ssh




1 Motivation

2 Use Cases

3 Conclusion



# 1. create an AWS account

# 2. load credentials into R
Sys.setenv("AWS_ACCESS_KEY_ID" = "my_key")
Sys.setenv("AWS_SECRET_ACCESS_KEY" = "my_secret")
Sys.setenv("AWS_DEFAULT_REGION" = "us-east-1")



Storage



# cloud storage
library("aws.s3")

# put an R object into the cloud
s3saveRDS(mtcars, "s3://bucket/mtcars.rds")

# get an R object from the cloud
s3readRDS("s3://bucket/mtcars.rds")



# manipulate buckets
put_bucket()
get_bucket()
delete_bucket()

# manipulate objects
put_object()
get_object()
delete_object()



# higher-level functions
s3source()

s3save()
s3load()

s3read_using()
s3write_using()

# streaming R connection (rb)
s3connection()



Notifications



# notifications
library("aws.sns")

# create a "topic"
topic <- create_topic(name = "jsm-example")

# subscribe to it
subscribe(topic, "me@example.com", "email")
subscribe(topic, "1-111-555-1234", "sms")



# R script
done <- FALSE
while (!done) {

# long-running thing
done <- TRUE

}

# send notification
publish(

topic = topic,
message = "Your script is done. -R",
subject = "Done!"

)



Computing



library("aws.ec2") # cloudyr/aws.ec2

# RStudio-configured EC2 image
# http://www.louisaslett.com/RStudio_AMI/
image <- "ami-fd2ffe87"

# create keypair
my_keypair <- create_keypair("jsm-keys")
cat(my_keypair$keyMaterial, file = "my.pem")

my_sg <- create_sgroup(
"jsm-sg",
"Allow my IP",
vpc = describe_vpcs()[[1]]

)
authorize_ingress(my_sg)



# fire up instance
i <- run_instances(

image = image, type = "t2.micro",
sgroup = my_sg,
subnet = "subnet-b815a6e0",
keypair = my_keypair

)

ip <- allocate_ip("vpc")
associate_ip(i, ip)

browseURL(paste0("http://", ip$publicIp))



# log in to instance
library("ssh")
session <- ssh::ssh_connect(

paste0("ubuntu@", ip$publicIp),
keyfile = "my.pem",
passwd = "rstudio"

)

# hello world!
cat("’hello world!’\n", file = "helloworld.R")
# upload it to instance
ssh::scp_upload(session, "helloworld.R")

# execute script on instance
ssh::ssh_exec_wait(session, "Rscript helloworld.R")

# disconnect from instance
ssh_disconnect(session)



# cleanup
stop_instances(i[[1]])
terminate_instances(i[[1]])

release_ip(ip)

revoke_ingress(my_sg)

delete_sgroup(sgroup = my_sg)
delete_keypair(my_keypair)



A couple useful packages

https://cran.r-project.org/package=ssh

https://github.com/cloudyr/rmote

https:
//cran.r-project.org/package=remoter

https://cran.r-project.org/package=ssh
https://github.com/cloudyr/rmote
https://cran.r-project.org/package=remoter
https://cran.r-project.org/package=remoter


SaaS



library("aws.polly")

msg_en <- "Thanks for attending the Cloud and Distributed Computing for Statisticians presentation at JSM 2018. You’ve been a great audience!"

vec_en <- synthesize(msg_en, voice = "Joanna")

tuneR::play(vec_en)



library("aws.translate")

msg_es <- translate(msg_en, from = "en", to = "es")
vec_es <- synthesize(msg_es, voice = "Penelope")
tuneR::play(vec_es)

msg_ru <- translate(msg_en, from = "en", to = "ru")
vec_ru <- synthesize(msg_ru, voice = "Maxim")
tuneR::play(vec_ru)



library("aws.comprehend")

detect_language(msg_en)
detect_language(msg_es)
detect_language(msg_ru)



library("aws.transcribe")

tuneR::writeWave(vec_en, "english.wav")
aws.s3::put_object(
"english.wav",
"s3://jsm2018cloudyrexample/english.wav",
acl = "public-read"

)

start_transcription(
"jsm2018-example",
paste0("https://s3.amazonaws.com/",

"jsm2018cloudyrexample/",
"english.wav")

)

tr <- get_transcription("jsm2018")$Transcriptions
cat(strwrap(tr, 60), sep = "\n")



Crowdsourcing



Massively
Parallel

Human
Intelligence

Ideal Case for
Crowdsourcing



Data Need

Design Data
Entry Form

Create
HIT(s) Assignment

Assignment

Assignment

Assignment

Assignment

Review

Analyze
dataR

HTML

MTurk



a = GenerateHTMLQuestion(file = "hit.html")

hit = CreateHIT(
title = "Short Survey",
description = "5 question survey",
keywords = "survey, questionnaire",
duration = seconds(hours = 1)
reward = .10,

assignments = 5000,
expiration = seconds(days = 4),
question = a$string,

)



Anatomy of an MTurkR App

Assignment

CreateHIT()

Check
Known Answer(s)

Reject
Approve

Compare w/
Other Assignments

Reject
Approve

GetAssignments()



BulkCreateFromURLs(
url = paste0("https://example.com/",1:10,".html"),

title = "Image Categorization",
description = "Describe contents of an image",
keywords = "categorization, image",
reward = .01,
duration = seconds(minutes = 5),

annotation = "My Project",
expiration = seconds(days = 4),
auto.approval.delay = seconds(days = 1)

)



Get back a data.frame:

GetAssignments(annotation = "My Project")

Example:
An image coding task with 27,500 images

took 225 workers

about 75 minutes

and cost $412.50

Pay workers with:
ApproveAssignments(annotation = "My Project")





1 Motivation

2 Use Cases

3 Conclusion



CloudyR isn’t just AWS

GCS APIs are much cleaner

Storage: googleCloudStorageR

Compute: googleComputeEngineR

Others: gcloudR (client for any GCS API)

In the pipeline:
Meta packages to abstract across cloud services



CloudyR isn’t just AWS

GCS APIs are much cleaner

Storage: googleCloudStorageR

Compute: googleComputeEngineR

Others: gcloudR (client for any GCS API)

In the pipeline:
Meta packages to abstract across cloud services



What’s next for CloudyR?

Databases
(DynamoDB, Redshift, RDS)

Machine Learning as a Service
(AWS Glue, ML, SageMaker)

Everything!?



We can always use volunteers!

Experienced Developers
Build packages for
new cloud services

Expand our scope
beyond AWS and GCS

Contribute PRs

Beginner Developers
Feature requests

Improve our
documentation and
examples

Improve our tests

Use packages and
find bugs



# Start Cloud Computing

install_github("cloudyr/awspack")
install_github("cloudyr/gcloudR")

# Questions?
# Twitter @thosjleeper @cloudyrproject
# https://github.com/cloudyr
# http://cloudyr.github.io
# thosjleeper@gmail.com

https://twitter.com/thosjleeper
https://twitter.com/cloudyrproject
https://github.com/cloudyr
http://cloudyr.github.io
mailto:thosjleeper@gmail.com



	Motivation
	Use Cases
	Conclusion

