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What makes
something a cause?

Write for 1 minute.
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1 Correlation vs. Causation
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Correlation

Correlation is the non-independence of two
variables for a set of observations
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Correlation

Synonyms: correlation, covariation,
relationship, association

Any correlation is potentially causal
X might cause Y
Y might cause X
X and Y might be caused by Z
X and Y might cause Z
There may be no causal relationship
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Flashback!

Two Categories of Inference:

1 Descriptive Inference
What are the facts?

2 Causal Inference
Why does something occur?
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Correlation is Causation?

The mind tends to interpret
correlations and patterns as evidence
of causal relationships!

But this is rarely correct!
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U.S. college majors: Average SAT Quantitative score of students by gender ratio
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Table A: Proportion of individuals at different stages of the CJS process by
ethnic group compared to general population, England and Wales

White Black Asian Mixed Chinese Unknown Total
or Other

Population aged 10 88.6% 2.7% 5.6% 1.4% 1.6% - 48,417,349
or over 2009
Stop and Searches 67.2% 14.6% 9.6% 3.0% 1.2% 44% 1,141,839
(s1) 2009/10
Arrests 2009/10 79.6% 8.0% 5.6% 2.9% 1.5% 24% 1,386,030
Cautions 2010" 83.1% 7.1% 5.2% - 1.8% 2.8% 230,109
Court order 81.8% 6.0% 4.9% 2.8% 1.3% 3.2% 161,687
supervisions 2010
Prison population 72.0% 13.7% 71% 35% 1.4% 2.2% 85,002

(including foreign

nationals) 2010

Note:

1. Data based on ethnic appearance and therefore do not include the Mixed category.

Source: Ministry of Justice, “Statistics on Race and the
Criminal Justice System 2010"


https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/219967/stats-race-cjs-2010.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/219967/stats-race-cjs-2010.pdf
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Mumber of Nobel
Laureates per 10 Million Population.

Source: StackExchange


https://stats.stackexchange.com/questions/36/examples-for-teaching-correlation-does-not-mean-causation
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Naive Causal Inference

Correlations are not necessarily causal

Our mind thinks they are because
humans are not very good at the kind of
causal inference problems that social
scientists care about

Instead, we're good at understanding
physical causality
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Physical causality

Action and reaction
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Physical causality

Action and reaction

Example:

Picture a ball resting on top of a hill
What happens if | push the ball?
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Physical causality

Action and reaction

Example:

Picture a ball resting on top of a hill
What happens if | push the ball?

Features:

Observable
Single-case
Deterministic
Monocausal
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Pre-Post Change Heuristic

Our intuition about causation relies too
heavily on simple comparisons of
pre-post change in outcomes before and
after something happens

No change: no causation
Increase in outcome: positive effect
Decrease in outcome: negative effect
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Pre-Post Change Heuristic

Our intuition about causation relies too
heavily on simple comparisons of
pre-post change in outcomes before and
after something happens

No change: no causation
Increase in outcome: positive effect
Decrease in outcome: negative effect

Why is this flawed?
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Threats to Validity

Campbell and Ross talk about six “threats to
validity" (i.e., threats to causal inference)
related to time-series analysis
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Flaws in causal inference
from pre-post comparisons

1 Maturation or trends

2 Regression to the mean

3 Selection

# Simultaneous historical changes
5 Instrumentation changes

6 Monitoring changes behaviour
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Maturation or trends

Is a shift in an outcome before and after
a policy change the impact of the policy
or a small part of a longer time trend?

Case Study: Connecticut crackdown on
speeding (1955)
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Figure 1. Connecticut Traffic Fatalities, 1955-1956
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Regression to the mean

Is a shift in an outcome before and after
a policy change the impact of the policy
or a function of statistical variation?

Case Study: Connecticut crackdown on
speeding (1955)
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Figure 2. Connecticut Traffic Fatalities, 1951-1959
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Selection

Is a shift in an outcome before and after
a policy the impact of the policy or the
result of the policy being implemented
when outcomes are extreme?

Case Study: Connecticut crackdown on
speeding (1955)
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Simultaneous changes

Is the shift in an outcome before and
after a policy the impact of the policy or
the result of a simultaneous historical
shift?

Case Study: US Great Depression Policy
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Instrumentation changes

Is the shift in an outcome before and
after a policy the impact of the policy or
a change in how the outcome is
measured?

Case Study: Age-adjusted mortality
rates
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Table 2. Texas 1998 Cancer Mortality Rates (Cases per 100,000), by Cancer Site,
Using 1970 and 2000 Standard Populations

Male Female
Cancers 1970 2000 Change (%) 1970 2000 Change (%)
All 202.8 258.9 27.7 131.6 163.7 24.4
Colon and rectum 19.5 25.1 29.2 13.0 17.2 329
Lung and bronchus 69.7 856 227 33.8  40.6 20.1
Prostate 224 338 50.4
Breast 222 270 219

Brain, other nervous system 5.1 6.0 18.2 3.5 4.1 16.0
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Monitoring changes
behaviour

Is the shift in an outcome before and
after a policy the impact of the policy or
a change in response to measuring the
outcome per se?

Case Study: Educational testing
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The more any quantitative social
indicator is used for social
decision-making, the more subject
it will be to corruption pressures
and the more apt it will be to
distort and corrupt the social
processes it is intended to monitor.

— Donald T. Campbell (1979)
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Flaws in causal inference
from pre-post comparisons

1 Maturation or trends

2 Regression to the mean

3 Selection

# Simultaneous historical changes
5 Instrumentation changes

6 Monitoring changes behaviour
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Getting Systematic about Causality

T USED T THINK,
CORRELATION IHPL.IED
CASATION.

7§

THEN T TOK A

STATISTICS CLASs.

Now I DON'T,

f

SOUNDS LKE THE
CLFGS HELPED.

WELL, MFNBE

9




Correlation vs. Causation Over-Time Changes Getting Systematic about Causality

3 Getting Systematic about Causality
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Directed Acyclic Graphs

Causal graphs (DAGs) provide a visual
representation of (possible) causal relationships
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Directed Acyclic Graphs

Causal graphs (DAGs) provide a visual
representation of (possible) causal relationships

Causality flows between variables, which are
represented as “nodes”

Variables are causally linked by arrows
Causality only flows forward in time
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Directed Acyclic Graphs

Causal graphs (DAGs) provide a visual
representation of (possible) causal relationships

Causality flows between variables, which are
represented as “nodes”
Variables are causally linked by arrows
Causality only flows forward in time
Nodes opening a “backdoor path” from
X — Y are confounds

“Selection bias” or “Confounding”
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Smoking Cancer
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Age

Environment

Smoking Cancer

Parental Genetic
Smoking Predisposition
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Age

Environment

Smoking Cancer

Parental Genetic
Smoking Predisposition
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Age

Environment

Cancer

Parental Genetic
Smoking Predisposition
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Causal Inference

Causal inference (typically) involves
gathering data in a systematic fashion in
order to assess the size and form of
correlation between nodes X and Y in such a
way that there are no backdoor paths
between X and Y by controlling for (i.e.,
conditioning on, holding constant) any
confounding variables, Z.
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