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Threats to statistical conclusion validity
1. Power
2. Statistical assumption violations
3. Fishing
4. Measurement error
5. Restriction of range
6. Protocol violations
7. Loss of control
8. Unit heterogeneity (on DV)
9. Statistical artefacts

SSC Table 2.2 (p.45)
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Measurement and operationalization
Content validity: does it include everything it is
supposed to measure
Construct validity: does the instrument actually
measure the particular dimension of interest
Predictive validity: does it predict what it is
supposed to
Face validity: does it make sense
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How do we know we manipulated what we
thought we did?

Before the study, the best way to figure out whether
a measure or a treatment serves its intended
purpose is to pretest it before implementing the full
study

During the study, the best way to figure out if our
manipulation worked is to do manipulation checks
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Experimental inference
How do we know if we have a statistically detectable
effect?

How do we draw inferences about effects?

We have a SATE estimate, what does that tell us
about PATE?
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Estimators and inference
Nonparametric inference: Build a randomization
(permutation) distribution

Parametric inference: Assume a sampling
distribution
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"Perfect Doctor"
True potential outcomes

Unit Y(0) Y(1)

1 13 14

2 6 0

3 4 1

4 5 2

5 6 3

6 6 1

7 8 10

8 8 9

Mean 7 5
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"Perfect Doctor"
An observational study or one realization of
randomization

Unit Y(0) Y(1)

1 ? 14

2 6 ?

3 4 ?

4 5 ?

5 6 ?

6 6 ?

7 ? 10

8 ? 9

Mean 5.4 11
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Randomization
What are all of the possible treatment effect estimates
we can get from our "Perfect Doctor" data?
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# theoretical randomizations
d <- data.frame(
    y1 = c(14,0,1,2,3,1,10,9),
    y0 = c(13,6,4,5,6,6,8,8) )
onedraw <- function(eff=FALSE){
    r <- replicate(nrow(d), sample(1:2,1))
    tmp <- d
    tmp[cbind(1:nrow(d),r)] <- NA
    if(eff) {
        return(mean(tmp[,'y1'], na.rm=TRUE) - 
               mean(tmp[,'y0'], na.rm=TRUE))
    } else
        return(tmp)
}

onedraw() # one randomization

onedraw(TRUE) # one effect estimate

# simulate 2000 experiments from these data
x1 <- replicate(2000, onedraw(TRUE))
hist(x1, col=rgb(1,0,0,.5), border='white')

# where is the true effect
abline(v=-2, lwd=3, col='red')
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Randomization inference
Once we have our experimental data, let's test the
following null hypothesis:

: Y is independent of treatment assignment

If we swapped the treatment assignment labels on our
data (ignoring the actual randomization) in every
possible combination to build a distribution of
treatment effects observable due to chance, would the
treatment effect estimate be likely or unlikely?

H0
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# compare to an empirical randomization distribution
experiment <- onedraw()
effest <- mean(experiment[,'y1'], na.rm=TRUE) - 
          mean(experiment[,'y0'], na.rm=TRUE)

w <- apply(experiment, 1, function(z) which(!is.na(z)))
yobs <- experiment[cbind(1:nrow(experiment), w)]

random <- function() {
    tmp <- sample(1:8, sum(!is.na(experiment[,'y1'])), FALSE)
    mean(yobs[tmp]) - mean(yobs[-tmp])
}

# build a randomization distribution from our data
x2 <- replicate(2000, onedraw(TRUE))
hist(x2, col=rgb(0,0,1,.5), border='white', add=TRUE)

abline(v=-2, lwd=3, col='red') # true effect
abline(v=effest, lwd=3, col='blue') # estimate in our ̀experiment̀

# empirical quantiles
quantile(x2[is.finite(x2)], c(0.025, 0.975))
# compare to actual quantiles
quantile(x1[is.finite(x1)], c(0.025, 0.975))
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Comparison to t-test
# two-tailed
t.test(yobs ~ w)
sum(abs(x1[is.finite(x1)]) > effest)/2000

# one-tailed (greater)
t.test(yobs ~ w, alternative='greater')
sum(x1[is.finite(x1)] > effest)/2000
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Effects and Uncertainty
The estimator for the SATE is the mean-difference

The variance of this estimate is influenced by:

1. Sample size
2. Variance of Y
3. Relative treatment group sizes

We generally assume constant individual treatment
effects

16 / 42



Formula for SE

where

 is control group variance

and

 is treatment group variance

=SÊSATE +( )Var̂ Y0

N0

( )Var̂ Y1

N1

− −−−−−−−−−−−−
√

( )V ar̂ Y0

( )V ar̂ Y1
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Estimators and inference
Difference of means (or proportions)

Randomization distribution
t-test

ANOVA

Regression
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Protocol
1. Plan for data collection
2. Plan for analyses
3. Plan for sample size
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Practical analytic advice
1. Power analysis to determine sample size
2. Don't observe outcomes until analysis plan is settled
3. If we need to use covariates:

Plan for their use in advance
Block on them, if possible
Measure them well

4. Balance
This is controversial

Mostly from Rubin (2008)
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Moderation
If we have an hypothesis about moderation, what can
we do?

Best solution: manipulate the moderator

Next best: block on the moderator and stratify our
analysis

Estimate Conditional Average Treatment Effects

Least best: include a treatment-by-covariate
interaction in our regression model
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Mediation
If we have hypotheses about mediation, what can we
do?

Best solution: manipulate the mediator

Next best: manipulate the mediator for some,
observe for others

Least best: observe the mediator
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Experimental Power
Simple definition:

"The probability of not making a Type II error", or "Probability
of a true positive"

Formal definition:

"The probability of rejecting the null hypothesis when a causal
effect exists"
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Type I and Type II Errors
 True  False

Reject Type 1
Error

True
positive

Accept False
negative

Type II
error

True positive rate is power

False negative rate is the significance threshold,
typically 

H0 H0

H0

H0

α = .05
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Experimental Power
What impacts power?

As n increases, power increases

As the true effect size increases, power increases
(holding n constant)

As  increases, power decreases

Conventionally, 0.80 is a reasonable power level

V ar(Y )
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Doing a power analysis I
Power is calculated using:

1. Treatment group mean outcomes
2. Sample size
3. Outcome variance
4. Statistical significance threshold
5. A sampling distribution
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Doing a power analysis II

where

: treatment group mean
N: total sample size

: outcome standard deviation
: statistical significance level
: Normal distribution function

P ower = ϕ( − (1 − ))| − |μ1 μ0 N√
2σ

ϕ−1 α
2

μ

σ

α

ϕ
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Minimum Detectable Effect
Power is a difficult thing to understand

We can instead think about what is the smallest
effect we could detect given:

1. Treatment group sizes
2. Expected correlation between treatment and

outcome
3. Our uncertainty about the effect size
4. Intended power of our experiment

Sometimes non-zero effects are not detectable
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Minimum Detectable Effect
"Backwards power analysis"

num <- (1-cor(w, yobs)̂2)
den <- prod(prop.table(table(w))) * 8

# use our observed effect SE
se_effect <- summary(lm(yobs ~ w))$coef[2,2]

sigma <- sqrt((se_effect * num)/den)
sigma
sigma * 2.49 # one-sided, 80%, .05
sigma * 2.80 # two-sided, 80%, .05

# vary our guess at the effect SE
sqrt(( seq(0,3,by=.25) * num)/den) * 2.8
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Effect sizes
We rarely care only about statistical significance

We want to know if effects are large or small

We want to compare effects across studies
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Effect sizes
In two-group experiments, we can use the standardized
mean difference as an effect size

Two names: Cohen's d or Hedge's g

Basically the same:

, whered = −x̄1 x̄0

s

s = ( −1) +( −1)n1 s2
1 n0 s2

0
+ −2n1 n0

− −−−−−−−−−−−√
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Effect sizes
Cohen gave "rule of thumb" labels to different effect
sizes:

Small: ~0.2

Medium: ~0.5

Large: ~0.8
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Broken experiments
Attrition

Noncompliance

One-sided (failure to treat)
One-sided (control group gets treated)
Cross-over

Missing data
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Analysis of data with attrition
Considerations:

Symmetric, possibly random, attrition

One-sided or systematic attrition

Pre-treatment/post-treatment

Pre-measurement/post-measurement
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Noncompliance analysis
Choices:

1. Intention to treat analysis

2. As-treated analysis

3. Exclude noncompliant cases

4. Estimate a Local Average Treatment Effect (LATE)

aka Compliance Average Treatment Effect (CATE)
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One-sided noncompliance

We need to observe compliance to estimate the LATE

ITT = −Ȳ¯̄
1 Ȳ¯̄

0

LATE = ITT
Pct.Compliant
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Two-sided noncompliance
1. This is more complex analytically

2. Stronger assumptions are required to analyze it

Especially monotonicity
e.g., no one who who go to the library if not
encouraged but who won't go to the library if
encouraged

3. This is a classic design trumps analysis problem

38 / 42



Missing Data
Problems:

Missing data is a threat to representativeness

Missing data increases our uncertainty

Solutions:

Case deletion

Imputation
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Cluster random assignment
Cluster randomization is fine if cluster means are
similar

Otherwise, clustering introduces inefficiencies

Or we can change our unit of analysis

Contrast people as units versus clusters as units
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Next week
Continue our conversation about ethics

Read: The Belmont Report

Discuss practical issues about implementation

For Shadish, Cook, and Campbell, when reading
Ch.14 focus on pp.488--504 (2nd half of chapter)
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http://www.hhs.gov/ohrp/humansubjects/guidance/belmont.html

