Analysis of Experiments
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Outline

1. Statistical conclusion validity (briefly)
2. Experimental analysis
3. Analysis-relevant practical considerations

4. Preview of next week
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Threats to statistical conclusion validity

Power

Statistical assumption violations
Fishing

Measurement error

Restriction of range

Protocol violations

Loss of control

Unit heterogeneity (on DV)
Statistical artefacts

©CRXIUE W=

SSC Table 2.2 (p.45)
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Measurement and operationalization

Content validity: does it include everything it is
supposed to measure

Construct validity: does the instrument actually
measure the particular dimension of interest
Predictive validity: does it predict what it is
supposed to

Face validity: does it make sense

4 /42



How do we Rknow we n
thought we did?

anipulated what we

e Before the study, the best way to figure out whether
a measure or a treatment serves its intended
purpose is to pretest it before implementing the full

study

e During the study, the best way to figure out if our
manipulation worked is to do manipulation checks
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Experimental inference

« How do we know if we have a statistically detectable
effect?

e How do we draw inferences about effects?

e We have a SATE estimate, what does that tell us
about PATE?
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Estimators and inference

e Nonparametric inference: Build a randomization
(permutation) distribution

e Parametric inference: Assume a sampling
distribution
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"Perfect Doctor”

True potential outcomes

Unit Y(0) Y(1)
1 13 14
2 6 0
3 4 1
4 5 2
5 6 3
6 6 1
7 8 10
8 8 9

Mean 7 5
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"Perfect Doctor”

An observational study or one realization of

randomization

Unit Y(0) Y(1)
1 ? 14
2 6 ?
3 4 ?
4 5 ?
5 6 ?
6 6 ?
7 ? 10
8 ? 9

Mean 54 11
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Randomization

What are all of the possible treatment effect estimates
we can get from our "Perfect Doctor" data?
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# theoretical randomizations
d <- data.frame (
vyl = ¢(14,0,1,2,3,1,10,9),
y0 = ¢(13,6,4,5,6,6,8,8) )
onedraw <- function (eff=FALSE) {
r <- replicate(nrow(d), sample(l:2,1))
tmp <- d
tmp[cbind (l:nrow(d),r)] <- NA
if (eff) {
return (mean (tmp[, 'yl'], na.rm=TRUE) -
mean (tmp[, 'y0'], na.rm=TRUE))
} else
return (tmp)

}

onedraw () # one randomization

onedraw (TRUE) # one effect estimate

# simulate 2000 experiments from these data
x1 <- replicate (2000, onedraw (TRUE))

hist(x1l, col=rgb(1,0,0,.5), border="'white')

# where is the true effect
abline (v=-2, lwd=3, col='red')
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Randomization inference

Once we have our experimental data, let's test the
following null hypothesis:

H,:Y is independent of treatment assignment

If we swapped the treatment assignment labels on our
data (ignoring the actual randomization) in every
possible combination to build a distribution of
treatment effects observable due to chance, would the
treatment effect estimate be likely or unlikely?
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# compare to an empirical randomization distribution
experiment <- onedraw ()
effest <- mean(experiment[, 'yl'], na.rm=TRUE) -

mean (experiment[, 'y0'], na.rm=TRUE)

w <- apply(experiment, 1, function(z) which(!is.na(z)))
yobs <- experiment[cbind(l:nrow (experiment), w) ]

random <- function () {
tmp <- sample(1:8, sum('!is.na(experiment[,'yl'])), FALSE)
mean (yobs [tmp]) - mean (yobs[-tmp])

}

# build a randomization distribution from our data
x2 <- replicate (2000, onedraw (TRUE))

hist(x2, col=rgb(0,0,1,.5), border="'white', add=TRUE)

abline (v=-2, lwd=3, col='red') # true effect

abline (v=effest, 1lwd=3, col='blue') # estimate in our "experiment’

# empirical quantiles
quantile(x2[is.finite (x2)], c(0.025, 0.975))
# compare to actual quantiles
quantile(x1[is.finite(x1)], c(0.025, 0.975))
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Comparison to t-test

# two-tailed
t.test (yobs ~ w)
sum(abs (xl[is.finite(x1)]) > effest) /2000

# one-tailed (greater)
t.test(yobs ~ w, alternative='greater')
sum(xl[is.finite(x1)] > effest) /2000

15 /42



Effects and Uncertainty

e The estimator for the SATE is the mean-difference
e The variance of this estimate is influenced by:

1. Sample size
2. Variance of Y
3. Relative treatment group sizes

« We generally assume constant individual treatment
effects
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Formula for SE

55 Var(Y; Var (i

SEgsare = \/ ]\;00) + ]él )

where

Var(Yy) is control group variance

and

Var(Y;) is treatment group variance
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Estimators and inference

e Difference of means (or proportions)

o Randomization distribution
o {-test

« ANOVA

e Regression
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Protocol

1. Plan for data collection
2. Plan for analyses
3. Plan for sample size
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Practical analytic advice

1. Power analysis to determine sample size
2. Don't observe outcomes until analysis plan is settled
3. If we need to use covariates:
o Plan for their use in advance
o Block on them, if possible
o Measure them well
4. Balance

o This is controversial

Mostly from Rubin (2008)
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Moderation

If we have an hypothesis about moderation, what can
we do?

e Best solution: manipulate the moderator

e Next best: block on the moderator and stratify our
analysis

o Estimate Conditional Average Treatment Effects

e Least best: include a treatment-by-covariate
Interaction in our regression model
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Mediation

If we have hypotheses about mediation, what can we
do?

e Best solution: manipulate the mediator

e Next best: manipulate the mediator for some,
observe for others

e Least best: observe the mediator
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Experimental Power
Simple definition:

"The probability of not making a Type Il error”, or "Probability
of a true positive"

Formal definition:

"The probability of rejecting the null hypothesis when a causal
effect exists”
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Typeland Typell Errors

Hy True H, False
Reject Type 1 True
Hy Error positive
Accept False Type II
Hy negative error

True positive rate is power

False negative rate is the significance threshold,
typically o = .05
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Experimental Power

What impacts power?
e AS n increases, power increases

e As the true effect size increases, power increases
(holding n constant)

e As Var(Y) increases, power decreases

e Conventionally, 0.80 is a reasonable power level
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Doing a power analysis |

Power is calculated using:

Treatment group mean outcomes
Sample size

Outcome variance

Statistical significance threshold
A sampling distribution

Ul WD =
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Doing a power analysis ||
Power = gb(—”lgg\/w —¢! (1 — %))

where

p: treatment group mean

N: total sample size

o. outcome standard deviation
. statistical significance level
#: Normal distribution function
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Minimum Detectable Effect

e Power is a difficult thing to understand

e We can instead think about what is the smallest
effect we could detect given:

1.
2.

3.
4.

Treatment group sizes

Expected correlation between treatment and
outcome

Our uncertainty about the effect size
Intended power of our experiment

e Sometimes non-zero effects are not detectable

28 [ 42



Minimum Detectable Effect

"Backwards power analysis"

num <- (l-cor (w, yobs)”"2)
den <- prod(prop.table(table(w))) * 8

# use our observed effect SE
se effect <- summary (lm(yobs ~ w))S$coef[2,2]

sigma <- sqgrt((se effect * num)/den)
sigma

sigma * 2.49 # one-sided, 80%, .05
sigma * 2.80 # two-sided, 80%, .05

# vary our guess at the effect SE
sgrt (( seq(0,3,by=.25) * num)/den) * 2.8
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Effect sizes

 We rarely care only about statistical significance
« We want to know if effects are large or small

« We want to compare effects across studies
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Effect sizes

In two-group experiments, we can use the standardized
mean difference as an effect size

Two names: Cohen's d or Hedge's g
Basically the same:
d = ===, where

. \/ (m DT (n0—1)53

n1+ng —2
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Effect sizes

Cohen gave "rule of thumb" labels to different effect
sizes:

e Small: ~0.2
e Medium: ~0.5

e Large: ~0.8
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BroRen experiments

e Attrition

e Noncompliance

o One-sided (failure to treat)
o One-sided (control group gets treated)
o Cross-over

e Missing data
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Analysis of data with attrition

Considerations:
e Symmetric, possibly random, attrition
e One-sided or systematic attrition
e Pre-treatment/post-treatment

o Pre—measurement/post—measurement
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Noncompliance analysis

Choices:

1. Intention to treat analysis

2. As-treated analysis

3. Exclude noncompliant cases

4. Estimate a Local Average Treatment Effect (LATE)

o aka Compliance Average Treatment Effect (CATE)
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One-sided noncompliance

ITT=Y,-Y,
B ITT
LATE = Pct.Compliant

We need to observe compliance to estimate the LATE
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Two-sided noncompliance

1. This is more complex analytically

2. Stronger assumptions are required to analyze it

o Especially monotonicity

o e.g., no one who who go to the library if not
encouraged but who won't go to the library if
encouraged

3. This is a classic design trumps analysis problem
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Missing Data
Problems:
o Missing data is a threat to representativeness
e Missing data increases our uncertainty
Solutions:
e Case deletion

e Imputation
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Cluster random assignment

e Cluster randomization is fine if cluster means are
similar

e Otherwise, clustering introduces inefficiencies
e Or we can change our unit of analysis

o Contrast people as units versus clusters as units
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Next week

« Continue our conversation about ethics
o Read: The Belmont Report
e Discuss practical issues about implementation

e For Shadish, Cook, and Campbell, when reading
Ch.14 focus on pp.488--504 (2nd half of chapter)
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http://www.hhs.gov/ohrp/humansubjects/guidance/belmont.html

