Sampling and Data Analysis in R

1 Purpose

The purpose of this activity is to provide you with an understanding of statistical inference
and to both develop and apply that knowledge to the use of the R statistical programming
environment. The activity will be focused on random sampling methods, with some discussion
of model-based notions of “representativeness”.

2 Overview

This lab can be completed during class time and at-home. The final problem set for the course

(Problem Set 8) will revisit some of this material, in tandem with the new material we will cover
in LT.

3 Your Task

Using R as instructed, complete the following activities.

3.1 Populations

1. As we talked about in lecture, simple random sampling is the easiest design-based strategy
for ensuring that your sample data are representative of the population from which those
observations are drawn. We are not always interested in obtaining such a representative
sample (e.g., because we are interested in particular cases or sets of cases) but when we
are, we can attempt to construct a representative sample either by:

(a) Using “random sampling” methods to select cases from a population such that our
sample will tend on average or in expectation to match the population’s characteris-
tics.

(b) Identifying a set of features (variables) that distinguish cases from one another and
selecting cases that vary according to the population distribution of those character-
istics, or

The first of today’s activities reiterates sampling- or design-based approaches using R. To
do this, we are going to examine a population dataset containing the names of all babies
born in the United States. This dataset contains the name and sex of every baby in the
entire population of US babies born since approximately 1936. The dataset is available as
an R package, so we can install and load it as usual:

install.packages("babynames")
library("babynames")



. Looking at the first few rows of the data (what you see when you type head (babynames) ),
what is the unit of analysis of the dataset? How many rows are there in the dataset?
How many variables? You should note that this is dataset is actually an aggregation of
the population data: each row is a year-name-sex observation (so the unit of analysis
is a name used in a given year for a baby of a given sex). How many unit name-sex
combinations are there for 20147

. Are there any names that are used for both male and female babies in 20147 Here’s the
code for one example:

babynames [ (babynames[["year"]] == 2014) & (babynames[["name"]] == "Skylar"), ]

Can you find others? You should be able to, there are 2465 names that appeared for
both males and females that year. Hint: the duplicated() function can help you find the
answer.

. How common is the name Skylar as of 20147 How many males and female babies had this
name? You will need to subset the data to find out.

. Using ggplot2, plot the change in the number of Skylars over time:

skylar <- babynames[babynames[["name"]] == "Skylar", ]
library("ggplot2")
ggplot(skylar, aes(x = year, y = n)) + geom_line(aes(colour = sex))

Are there more male or female Skylars? For fun, examine how the change in other names
has played out over time.

. Now, because the dataset is an aggregation, it isn’t exactly in the form we need. We need to
disaggregate the data to create a dataset where the unit of analysis is an individual person
(rather than a year-name-sex aggregation). To do that, we need to create a new data
frame such that we create multiple rows based on the count those names in the babynames
dataset. Do not try to do this for all years (your computer likely does not have enough
memory to do it!), but you should be able to create a new dataset that contains one row
per person for every baby born in a given year (e.g., 2014).

To start on that, figure out how many babies were born in 2014. Hint: use sum(). The
correct answer is 3,670,151.

. Our new data frame should therefore have 3,670,151 rows. To create it, we will start by
subsetting babynames to only 2014.

babynames2014 <- babynames [babynames[["year"]] == 2014, ]

Then, we need to know how many of each name-sex combination there are. This is
contained in "n" variable of the dataset. Our new data frame will have one row for each
person, or said another way n rows for each name-sex combination in the babynames2014
subset. We can do that by repeating each row index from babynames2014 by the number
of babies with that name-sex combination:
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expand <- rep(seq_len(nrow(babynames2014)), babynames2014[["n"]])
length (expand)

dat <- babynames2014[expand, -c(4:5)]

dim(dat)

head(dat)

The resulting dat data frame should have the intended number of rows, with one row for
each of the 3,670,151 babies.

How many males and how many females are there in this new dataset? What proportion
are male and what proportion are female? You should find that 0.518 (or 51.8%) are male.

3.2 Sampling

In practice, we very rarely have the ability to study every case in an entire population.
Because of time limitations or other resources, we only investigate a smaller number of
individuals. Imagine, for example, if we wanted to study the U.S. population of babies
born in a given year, it would be time consuming to contact the families of all 3.7 million
of them. If we want to make claims about that entire population, we need to be careful
about how we choose which subset to study. We cannot simply take an arbitrary subsample
and expect it to be representative of the population. Instead, social scientists typically
use random sampling to select cases from a population. Such random sampling has nice
properties, among them (1) the sample will tend to be representative of the population as
a whole and (2) it requires relatively small numbers of cases to make very precise claims
about unknown or unobserved features of the population based on the information provided
by the sample.

To showcase this, let’s draw a very small sample from this population using the sample ()
function. Start by drawing a small sample of just ten babies from the 2014 dataset:

set.seed(234) # this just keeps our answers consistent
s1 <- sample(seq_len(nrow(dat)), 10, FALSE)
dat[s1,]

What proportion of this sample of 10 babies are male? The correct answer is p = 0.7. (it’s
easy to see this graphically: ggplot(dat[sl,], aes(x = sex)) + geom bar()). Is that
value, p, a good estimate of the proportion of males in the population as a whole, p? Why
or why not?

Try taking another sample. Indeed, try taking a large number of different samples. How
much does the proportion of males, p in each sample vary? Here’s some code to do it:

x <- replicate(15, {
prop.table(table(dat [sample(seq_len(nrow(dat)), 10, FALSE), "sex"]))
19)

X

In the above code, replicate() just repeats an R expression the specified number of
times.! Hopefully you can see that there is considerable between-sample variation in the
estimated proportion of males, p. You can see this visually by plotting the estimates from
each sample:

'For example: replicate(5, rnorm (1) + rnorm (1)) returns a vector of five numeric values.



ggplot(, aes(x = t(x)[,2])) + geom_histogram(binwidth = 0.05)

13. Clearly the “point estimate” from each sample, p is not a very good estimate of the true
population proportion, p. But we know this and consequently, scientists who use random
sampling are more interested in what are called “interval estimates” that express a range
of plausible values of the population parameter, p given the estimate, p that we obtained
from our sample. Recall our uncertainty about the true value of the population parameter
is primarily influenced by three factors?:

a e sample size that have drawn from the population (n
Th le size that h d f th lati
(b) The sampling procedure (in this case, simple random sampling)

(¢) The variance (Var(Y)) of the population variable (Y) we are interested in

We typically summarize our uncertainty about the value of the population parameter, p
by a quantity called the “standard error” (SE). The SE expresses how much our sample
estimates, p vary across samples (were we to repeatedly sample from the population). The
standard error is meant to capture the idea that if we repeated our sampling process and
calculated our statistic of interest (in this case, the proportion of males, p) on each sample,
the standard deviation of those estimates around the true proportion, p would be the SE.

The SE can then be used to construct a “margin of error” that conveys the interval in
which we think the population parameter (the true proportion of males) is likely to be
given the sample estimate and how much uncertainty we have due to “sampling error”
(i.e., the fact that we are not observing the whole population).

14. To get a better grasp on this idea, we are going to draw numerous random samples from
our population and then calculate the standard deviation of those estimated proportions,
p from each sample. The standard deviation of our estimates from repeated sampling is
the standard error, SE(p). Let’s repeat our random sampling of 10 babies and calculate
the proportion for each sample. We will repeat this sampling procedure 1000 times to
produce a vector of 1000 estimated values of p (one estimate per sample of n = 10):

set.seed(123)
est <- replicate(1000, {

prop.table(table(dat [sample.int(nrow(dat), 10, FALSE), "sex"])) [2]
H

The est vector contains each of those 1000 estimated values of p. In statistics, were we to
repeat this exercise an infinite number of times, the est vector of estimates is what would
be called the “sampling distribution” of the estimate. This term refers to the distribution
of a given statistic across repeated samples of the same size from a population.

15. When you have the est vector (note it may take some time to compute), examine the
results:

e What does the histogram look like:
ggplot(, aes(x = est)) + geom histogram(binwidth = 0.05)

e Are the sample proportions “unbiased” (meaning the mean of the sample estimates,
p is close to the population proportion, p): mean(est)?

2In small populations (those with less than perhaps 1 million cases), we also care about the size of the
population (N), but that is not relevant here.



e How much do they vary? What is the standard deviation of the estimates (i.e., the
SE)?

You should find that the answer to the last question is 0.154. This value tells us how
much sampling variation there is in the estimated Pr(Male) across the 1000 samples. Try
plotting the p estimates as a histogram to see how the estimates vary.

16. If we change the sample size, the SE will change. Larger samples produce smaller SEs (to
the point that if we sample all units in the population, the SE is 0). Repeat the above
exercise but use a larger sample size (n = 20):

est <- replicate(1000, {
prop.table(table(dat [sample.int (nrow(dat), 20, FALSE), "sex"])) [2]
D
sd(est, na.rm = TRUE)
ggplot(, aes(x = est)) + geom_histogram() + x1im(c(0,1))

How large is the SE for this sample size of n = 207

17. Repeat the above exercise but for several larger sample size (n = 50, n = 100, n = 1000).
How large is the SE for each sample size? For n = 1000, your answer should be in the
neighborhood of 0.015.

18. Indeed, when we have access to population data we can calculate this SE without ever
drawing any samples because the SE is simply a function of the variance of the population

3 Var(Y)

variable and the size of the samples.” The formula is simply: . Because Y is

a binary variable in this case, Var(Y) is very easy to calculate, it is simply: Var(Y) =
p(1 —p). In R we can calculate that as:

prod(prop.table(table(dat[["sex"]1]1)))

This is about 0.25. The SE of our estimated proportion of males for a given sample size
is thus simply the square root of 0.25 over sample size. In R, we can calculate that for a
range of different sample sizes that we’ve considered (n = 10, 20, 50, 100, 1000):

sqrt(0.25/c¢(10,20,50,100,1000))

The resulting numbers should closely correspond to the “true” SEs that we calculated
earlier using the standard deviation of the sample estimates.

19. In practice, we do not typically draw multiple samples so we do not actually know how
much our estimates would vary, nor do we observe the population data so we do not know
what Var(Y') is. Statisticians get around this by using the sample data to estimate Var(Y")

using the “sample element variance”*:

prod(prop.table(table(dat [sample.int(nrow(dat), 20, FALSE), "sex"])))

3 Again, in small populations, it is more complicated, but most populations are large.

4For a numeric variable, the element variance of the data would be Var(Y) = s2. = >

be calculated by var() in R.

n  (Y;—Y)?

j—1 —m—7—> Which can
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This is imperfect, of course, but allows us to calculate the SE from only one sample and
therefore be able to make statements of uncertainty about the value of p knowing only p
and the estimated SE.

In particular, we often report what is known as the “margin of error” or “confidence
interval” for the population parameter. This conveys a range of possible values where
we would expect the population parameter to be, centered around our estimated value p.
For a typical margin of error, we simply double the standard error and add and subtract
that value to p to create an interval within which we estimate p to be (i.e., p+ / —
SE(p)). What is the margin of error for the proportion of males for a sample of n = 10007
Is the population proportion (0.518) within the estimated margin of error (i.e., within
the confidence interval)? Repeat this exercise for different sample sizes and check your
understanding.

The interpretation of confidence intervals can be quite complicated. The key idea is that a
confidence interval communicates, first, the amount of variation that one would expect to
see in the estimates drawn from samples of this size from this population. But because the
population parameter (in this case, the proportion of males) is estimated from the sample
data, the interval does not for sure include the true population parameter of interest.
Indeed, there is a non-zero chance that the confidence interval does not include the true
population parameter value (i.e., the true proportion of males) and this is invariant to the
size of the sample. It is not essential that you understand this yet — we will spend a
whole week (LT 7) on it — but it’s good if you start to think a bit about how sampling
generates estimates that carry potentially considerable uncertainty about the population
to which we claim interest in generalizing to.

The key intuition to derive from that interpretation is that a given sample may be highly
“biased” (i.e., it may not resemble the population particularly well with respect to any
variable). Yet, “design-based” claims to representativeness are premised upon the fact
that a statistic estimated on multiple, repeated samples of the same size, drawn in the
same way will on average be correct. Taking the mean of the proportions (or any statistic)
estimated from many repeated samples will, as the number of samples increases, be the
true population proportion. Any given sample is likely bias, so any estimated values must
be communicated with measures of uncertainty that convey the variation we would expect
across those many sample estimates were we to actually do that repeated sampling (which
is something we rarely ever do).

This can be a bit confusing, but it is an important matter to understand because design-
based, random sampling generates samples that — on average — are representative of the
population with respect to every variable, even those that we do not measure or that are
unobservable. A random sampling process will always, if repeated, generate on average
representative subsets of the population as a whole! And that conclusion is the core insight
of statistics.

3.3 Check Your Understanding

The previous activities were all focused on estimating the value of a single population
parameter, namely the proportion of males born in a given year. As a check on your
understanding of both substance and the R implementation, it is worth attempting to
estimate other population parameters, possibly on other subsets of the data. For example,
you might try to do the same for the following population parameters:



The proportion of males named Benjamin

The proportion of all names that start with “A”

The proportion of all babies named Olivia (across all years) that were born in 2010.

The proportion of all babies named Liam (across all years) that were born after 1980.

e ctc.

For each parameter, calculate the true population quantity from the original data and the
true population element variance. Then calculate the standard error and margin of error
for a sample of a given size. You may want to try to calculate how large of a sample size
you would need to be able to estimate that quantity of interest from to within a particular
degree of precision (e.g., within 1 percentage point).

Note: One thing that may be particularly important to consider is how a given sample
may yield a reasonable estimate of one population parameter but not a very good estimate
of other population parameters. In small samples, something like the proportion of people
in the population with a given name may easily be estimated to be 0 (because no one in
the sample takes that name) even though the true population proportion of people with
that name is non-trivial. In practicing these techniques it is important to remember this
because we rarely collect data to only estimate one population parameter and instead
typically estimate many parameters from one sample.

3.4 Model-Based Representativeness

All of the material thus far has discussed “design-based” sampling, wherein our claims
to representativeness can also be premised on what we might call “model-based” ideas.
A model in this case is simply a formal claim about the features of particular cases that
matter for drawing inferences from a particular set of cases to some other set of cases (such
as the population as a whole).

In design-based sampling, our ability to draw inferences to the population are not premised
on any particular features of cases being important; instead, generalizability to the popu-
lation is based upon the idea that if we repeatedly sampled, our samples would on average
resemble the population with respect to every possible variable.

Model-based claims to representativeness or external validity, by contrast, require asserting
what features (i.e., scores on variables) are important for making such claims. For example,
a very naive model would be that sex is the only variable that matters; in essence, all men
are the same and all women are the same, so information about any particular man is
perfectly representative of features of all men. This is, obviously, problematic. Yet a
more complex model (perhaps one incorporating many variables, such as age, education,
national origin, personality traits, ideology, etc.) might much more credibly segment the
population into groups that are relatively homogeneous.

If true, then claims about a particular “cell” or “stratum” in the population (e.g., white
English men from North London who are single, educated at the LSE, 24 years old, work
in finance, are somewhat narcissistic, and generally left-wing) might be more convincingly
made based upon information obtained from just a few arbitrarily (as opposed to randomly)
chosen individuals from that cell. Such arguments are premised entirely on the credibility
of the model linking the particular cases being studied to the population (i.e., that all
relevant variables have been identified that make cases different from one another in the
population).
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3.5 Further Practice with Descriptive Statistics

As some additional practice working with data in R, we will look at some real data from the
Quality of Government project, which contains country-level data on a very large number
of economic, social, health, and political indicators. Beyond the basic exercises here, you
may wish to apply the sampling techniques from above to these data in order to apply and
test your knowledge using a more politically relevant dataset.

We will import the data using the import () function from the rio package. Once the data
are loaded, we can examine the data themselves by just confirming that they are loaded
correctly:

# install.packages("rio")

library("rio")

d <- import("http://www.qogdata.pol.gu.se/data/qog_std_cs_janl7.dta")
dim(d)

nrow(d)

ncol(d)

names (d)

str(d)

To obtain some simple descriptive statistics about a few variables, we can use the summary ()
function:

summary (d$fh_polity2) # Polity scores (a democracy measure)
summary (d$gle_cgdpc)  # GDP

summary (d$dpi_finter) # executive term limits

summary (d$bti_cr) # civil rights index

summary (d$bl_asyl5f) # female educational attainment

Use ggplot2 to create a histogram of the distributions of these variables (see code above).
You may want to play with the bins argument to control the look of the histograms.

Use the R functions mean (), median(), and table() to inspect the central tendency and
distribution of these variables.

To assess the dispersion of each variable, use the functions we used above: var() and
sd().

If you're feeling ambitious, you can create some of your own (“user-defined”) functions to
calculate the skew and kurtosis statistics described in lecture:

skew <- function(x) {
m3 <- mean((x-mean(x))"3)
skew <- m3/(sd(x)"3)
skew

}
skew(d$gle_cgdpc)

kurtosis <- function(x) {
m4 <- mean((x-mean(x))"4)
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kurt <- m4/(sd(x)"4)-3
kurt

}

kurtosis(d$gle_cgdpc)

Skew and kurtosis are, in essence, meant to compare against a distribution known as the
“normal distribution.” It is “normal” for statistical reasons that have little to do with
“normality” in the sense of common English. It is also called the “Gaussian” distribution,
and that can sometimes be a less confusing (those less commonly used label). A normal
distribution looks like the following graph:

curve(dnorm, from = -4, to = 4, col = "red", 1lwd = 2)

If a variable follows the normal distribution, its histogram will follow a very specific bell
shape. We can “eyeball” this, but a more formal way to compare is by drawing what
is called a “Q-Q plot”. This is a special scatterplot drawn against a theoretical normal
distribution based on the “quantiles” of the data (see quantile()). If the scatterplot has
a straight line, then the data are normally distributed. If it deviates from that, then the
data are skewed or “peaked” in a way that deviates from “normality”. You can try it on
two of the QoG variables:

# on two of our observed variables from QoG:
ggplot(d, aes(sample = gle_cgdpc)) + geom_qq()
ggplot(d, aes(sample = bl_asy15f)) + geom_qq()

# on a vector of random numbers drawn to follow the normal curve:
ggplot(, aes(sample = rnorm(1le5))) + geom_qq()

Now repeat all of the above for the variables mentioned, and possibly explore other
variables in the dataset. A codebook is available here: http://qog.pol.gu.se/data/
datadownloads/qogstandarddata

Now, estimate the correlation between two variables. To do this, use cor():
cor(d$gle_cgdpc, d$bl_asylbf)

We can also generate a “correlation matrix” showing the correlation between many vari-
ables, but this requires specifying the data in a slightly different way:

cor(d[, c("gle_cgdpc", "bl_asylbf", "fh_polity2")])
Based on the correlations, imagine what the scatterplots might look like (keeping in mind
what the correlation coefficient measures). If the data are categorical (rather than interval),

you may want to use a cross-tabulation rather than correlation coefficient to summarize
the results:

table(d$dpi_finter, d$bti_cr)

Note: You can also use ftable() to produce a slightly different looking table. You might
also want to consider summarizing this relationship visually using a boxplot:


http://qog.pol.gu.se/data/datadownloads/qogstandarddata
http://qog.pol.gu.se/data/datadownloads/qogstandarddata
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ggplot(d) + aes(x = factor(dpi_finter), y = bti_cr) + geom_boxplot()

Use ggplot to create a scatterplot of the relationship between two variables. Here’s an
example showing the relationship between GDP (x-axis) and average female educational
attainment:

ggplot(d) + aes(x = gle_cgdpc, y = bl_asyl5f) + geom_point()

You will note that R prints a warning message when producing this plot. This relates to
missing values in the dataset, where one or both of these variables are unobserved for a
particular country. To see which countries we are missing data for, try the following:

d$cname[is.na(d$gle_cgdpc)] # for GDP
d$cname[is.na(d$bl_asy15f)] # for educational attainment

You can also look at the data directly to see where these missing values are. You can
use table(is.na(war)) to count how many missing values there are in the variable.
What does the presence of these missing values do for our ability to analyze the data?
to estimate the values of population parameters? to represent the population? to draw a
causal inference?

You may want to adjust the axis scales using, for example:

ggplot(d, aes(x = gle_cgdpc, y = bl_asyl5f)) +
geom_point() + scale_x_logl0(Q)

You can modify the appearance of the plot in many, many ways. A common way to do this
is by adding aes() features (see ? aes) or by changing the plot theme (see ? theme).
Experiment with different plots until you feel comfortable with the various options.

One useful feature of ggplot2 is the ability to create multiple “panels” or “facets” (visual
designer Edward Tufte calls these “small multiples”). To do this, you use the facet_wrap ()
function and specify a “formula” including the variable you would like to split the data
by. This example create subpanels for different regions of the world:

ggplot(d) + aes(x = gle_cgdpc, y = bl_asylbf) +
geom_point() + facet_wrap(~“ht_region)

Pause for a moment to consider how each facet represents a subset of the dataset. In this
way, each facet is a summary of the dataset for only a subset of the dataset. If we want to
summarize data in this way without plotting, we might consider using the aggregate ()
function. For example to calculate the mean level of GDP by region, you can do:

aggregate(gle_cgdpc ~ ht_region, data = d, FUN = mean)

Try this aggregate command using different variables and using a different value of the
FUN argument (which takes the name of a function, such as mean, sd, etc. without the
parentheses) until you feel comfortable with the process of generating data summaries.
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