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Abstract

The purpose of this document is to provide a brief introduction to R, focused on the core code

needed to load and analyze social scientific data. While numerous other resources exist online to

facilitate learning R and to provide guidance on performing particular procedures, this document

serves as a quick-start guide catered to the needs of students who are learning R for the first time

in the context of a course that provides little technical instruction in programming. My aim in this

document is to make learning R relatively more smooth so that you focus more of your attention

on learning statistics and political science research methods and less on being frustrated with the

particular software we are using to implement those ideas.1

1 Why R?

R refers to a statistical computing environment and the programming language used therein.
We use R in this course because it is free, open source, well-documented, involves a large
community of active users, and, most importantly, because it provides nearly unlimited
functionality that far exceeds that of all other statistical packages.

The major drawback of using R is that it is difficult for new users to learn. If you
have no background in programming, the learning curve can be very steep. Prior experience
with statistical theory is often not terribly helpful for actually implementing that theory in
R. Prior experience with other statistical packages (Stata, SAS, SPSS, Matlab) is somewhat
helpful and several texts have been written to help users of those packages transition to
R. If you have prior experience with programming in other languages, learning R will be
relatively straightforward; BASIC, C#, PHP, Python, Javascript, etc. all share certain
similarities with R.

A second challenge is that not a lot of effort has been put into making R user-friendly
for those with no programming experience. It is a command-based program. There is almost
nothing to “point-and-click” anywhere in R. You need to learn to program in order to even
use R. When you do something wrong in R, it will give you an error message. These errors

1Some of this material is adapted from Teppei Yamamoto’s (2009) “Introduction to R” Short Course. It
is released without copyright, but citation is always appreciated.
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are typically cryptic and unhelpful. Trial-and-error, use of the online help files, and use of
Google will all be necessary. Your instructor and TA should not be your first resources for
problems with R. There is a wealth of information on the internet about R and you should
plan on using your classmates as resources for troubleshooting. I am here to help you when
you have exhausted these other resources. I expect you to spend at least 20 minutes
trying to solve a problem and have thoroughly read the relevant help files before
emailing me.

So why use R if it is so difficult to learn and so different other statistical packages
that are also widely used and with which you might already be familiar? The payoff of
learning can be substantial. Because R is a programming language, it allows you an in-
credible amount of flexibility for the manipulation of data, the creation of unique functions
for analyzing and describing those data, and unparalleled functionality for the tabular and
graphical presentation of data. For these reasons, R can actually be fun, once you get to
know it. Being competent in R will make learning other programming languages and other
statistical packages much easier — skills that may prove useful and/or necessary in your
future careers. And, once you know how to program and do statistical analysis, people will
think you’re really intelligent even if you are not, which has its advantages on the job market.

So, let’s get started with R.

2 Getting Started

The first step is downloading and installing R. This is straightforward and instructions can
be found on the R homepage https://www.r-project.org. On that package click “CRAN”
on the left-hand side to find an appropriate download for your operating system. R runs on
all major operating systems in effectively the exact same fashion (yet another advantage of
R!). Once you have R installed, you can open it and you’ll be presented with a command
line. This is where you tell R what you want to do. Because you don’t know how to program
any R code yet, try using R as a calculator. The standard mathematical operators all work,
and follow the ‘order of operations.’ Here are some simple examples:

2+2

## [1] 4

51-38

## [1] 13

(2+4)*6

## [1] 36

20/4

## [1] 5
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2^3

## [1] 8

sqrt(4)

## [1] 2

But, R is more than just a calculator (obviously!). To move away from using R as
nothing more than a bloated calculator, we need to start doing some actual programming.
But before we start writing more complex code, you’ll probably want to move away from
typing code directly into R and instead use another program to help you keep track of your
code. There are a number of programs that can facilitate programming in R and dealing
with its text and graphical outputs. First, you need a text editor to save the code you write.
R doesn’t automatically save the code that you tell it, so you’ll save yourself a lot of time if
you save all of your code in a separate program. You can use simple programs like Notepad,
Wordpad, or even Word to do this, but better programs exist like Notepad++ (what I use),
Emacs, Visual Studio, or RStudio.

• Simple text editors: Notepad, TextPad, TextEdit, Wordpad (usually one or more of
these is built-in with your computer’s operating system)
• Simple editor built in to R: rite (install and open with install.packages("rite");

library("rite")

• Fancier text editors: TINN-R, WinEdt, Emacs, Aquamacs, Notepad++
• Advanced front-ends for R: RStudio, Revolution R, Visual Studio
• Graphical User Interface for R: Rcmdr

If you save all of your code in one of these programs with a .R file extension, you
should be able to completely reproduce your analysis simply by opening this file with R or
copying and pasting the entirety of the code into R. This is helpful if you ask someone for
help with your code because they can run all of your code and see where it may have had
problems.

2.1 Some General Notes Before Getting Started

Some things to know about R and the R interpreter that you’ll be interacting with:

• R is basically a functional programming language with certain object-oriented capabil-
ities. That means when we talk about particular statistics or procedures, we have to
write code that tells R how to perform that statistical procedure on a data object and
the function will generally return some new object. Usually, this looks something like
mean(x), where mean() is a procedure and x is an object (specifically, a vector of data
points) and the result is a new object, which we can print to the console, save for later
reuse, or simply abandon. When you first start working with R code, it can be hard to
distinguish what text is a procedure from what text is the label for a data object, but
over time this will get easier. If you use a text editor with syntax recognition, the text
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editor will highlight procedures (and sometimes objects) making the process of reading
and writing code even easier.
• R is case-sensitive. You need to type commands and variable names correctly or they

will not work. As an example, Mean() does not mean mean().
• Arrow up and Arrow down on your keyboard cycle through previous commands you

have entered. They do not scroll the screen up and down. Use your mouse scrollpad,
Page Up and Page Down, or the scrollbar instead.
• If you forget to put closing brackets on your commands, R will get confused and give

you a + symbol instead of the usual > prompt. You can simply type the closing bracket
in and the command will execute as if you typed it correctly the first time. This also
means that R doesn’t really recognize linebreaks. If you have a very long command
(like for plots, which we’ll talk about later), you may want to put the command on
multiple lines so it is easier to read and R will have no problem with this, as long as
you put the appropriate closing bracket at the end. If you use Mac OS or Linux OS, or
some of the fancier text editors, closing brackets are often put in automatically as you
type.

Some general advice for when things eventually go wrong in R:

1. Don’t panic!

2. Parsing errors versus syntax errors:

• Parsing errors mean you typed something wrong: Error: unexpected ’)’ in

"lm(y ~)"

• Syntax errors mean you typed correctly but R didn’t understand: Error in eval(expr,

envir, enclos) : object ’y’ not found

3. Google the error or warning

4. Use StackOverflow to get help

2.2 Creating simple constants and vectors

To do statistical analysis, we need to have data. R has various objects for storing different
types of data. The simplest way to store data is in a constant. A constant, to R, is just a
number that is given a name. We use the <- to store something into a particular labeled
object; we can also use = to do this; or -> by reversing the argument:

a<-4

a <- 4

# 4->a # this works, too

a

## [1] 4

Here, we’ve created a constant called a, which has the value 4. R doesn’t automati-
cally display the value of a when we assign a value to it. To see the value of a, you need to
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simply type a and hit <enter>. We can store multiple constants, give new values to a con-
stant we’ve already defined, and then conduct mathematical operations on those constants:

a <- 4

a <- 6

a

## [1] 6

b <- 3

b+2

## [1] 5

b*a

## [1] 18

Note that b ∗ a = 18 in the code above, even though we calculated b+2 in the line
directly above that calculation. You have to store a result as a constant to be able to use
that result later.

Storing all of our data as individual constants, isn’t very efficient, though. Let’s say
we want to collect a piece of data for a number of units (e.g., people in this class). We can
store a set of data points as a vector in R using the c() command. Vectors can have any
length and we can perform mathematical operations on vectors.

a <- c(1,2,3,4,5,6,7,8,9,10)

a

## [1] 1 2 3 4 5 6 7 8 9 10

a*2

## [1] 2 4 6 8 10 12 14 16 18 20

b <- a

b

## [1] 1 2 3 4 5 6 7 8 9 10

You can also create a sequence of numbers using seq() or just the :.

a <- seq(1:10)

a

## [1] 1 2 3 4 5 6 7 8 9 10
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b <- 1:10

b

## [1] 1 2 3 4 5 6 7 8 9 10

This is especially helpful if we want to calculate any basic statistics on a particular
vector of data (what we might, in social science language, call a variable). Let’s imagine for
instance that we collect a number of 2-dice rolls and record the sum in a vector called dice.
We can then find out a number of pieces of information about this set of rolls.

dice <- c(2,2,3,4,4,5,5,5,5,5,6,6,7,7,7,7,8,9,10,11)

table(dice) #a simple tabulation of how many of each value are in the vector

## dice

## 2 3 4 5 6 7 8 9 10 11

## 2 1 2 5 2 4 1 1 1 1

fivenum(dice) # the five number summary (min, Q1, median, Q3, max)

## [1] 2.0 4.5 5.5 7.0 11.0

quantile(dice, c(0.1,0.2,0.6,0.8)) # arbitrary quantiles

## 10% 20% 60% 80%

## 2.9 4.0 6.4 7.2

summary(dice) # a set of basic univariate statistics for the vector

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.00 4.75 5.50 5.90 7.00 11.00

Note we can also obtain these summary values individually.

dice <- c(2,2,3,4,4,5,5,5,5,5,6,6,7,7,7,7,8,9,10,11)

length(dice) #how many observations are there?

## [1] 20

min(dice) #minimum

## [1] 2

median(dice) #median

## [1] 5.5

max(dice) #maximum
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## [1] 11

max(dice)-min(dice) #range

## [1] 9

sum(dice)

## [1] 118

sum(dice)/length(dice)

## [1] 5.9

mean(dice) #mean

## [1] 5.9

v <- var(dice) #variance

v

## [1] 5.884211

sqrt(v) #standard deviation

## [1] 2.425739

sd(dice) #easier way of getting standard deviation

## [1] 2.425739

One thing that can be initially confusing for new users of R is exactly what is happen-
ing when you type in a given command. R does not solve mathematical equations. Instead,
like any programming language, it performs a set of procedures in a specific order on a par-
ticular data object (i.e., it performs an algorithm). What does an algorithm look like and
why does it matter? To use R effectively, one needs to understand what it is doing and how
to think in algorithms rather than equations. Think about the formula for the mean of a set
of data (like our dice roll data). The mathematical equation is x̄ = Σxi/n. This translates
into an R algorithm like the following:

dice <- c(2,2,3,4,4,5,5,5,5,5,6,6,7,7,7,7,8,9,10,11)

s <- 2+2+3+4+4+5+5+5+5+5+6+6+7+7+7+7+8+9+10+11

s

## [1] 118

len <- length(dice)
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len

## [1] 20

m <- s/len

m

## [1] 5.9

As we can see, the result is the same as using R’s built-in mean() function. We could
attempt something similar by converting the equation for variance (V ar[x] = Σ(xi−x̄)2/(n−
1)) into an algorithm (the first four steps of which are the same as calculating the mean):

1. Load the vector of all xi, called data
2. Sum all xi, store this result as sum
3. Count the number of xi, store this as length
4. Divide sum by length, store this as mean
5. Create a new vector, where each entry in the vector is the difference between each xi

in data and mean of all xi (mean), store as deviations
6. Create a new vector, where each entry is the square of the entry in deviations, store as

squares
7. Sum all values in squares, store as sumsquares
8. Divide sumsquares by one less than length, store as variance

We can then write that algorithm in R:

dice <- c(2,2,3,4,4,5,5,5,5,5,6,6,7,7,7,7,8,9,10,11)

s <- sum(dice)

len <- length(dice)

m <- s/len

deviations <- dice-m

squares <- deviations^2

sumsquares <- sum(squares)

v <- sumsquares/(len-1)

v

## [1] 5.884211

sqrt(v)

## [1] 2.425739

As we can see, our mathematical equation for variance is easily converted to an
algorithm that we can then write in R code. While the var() command is short and simple,
it reflects all of this underlying code. While we can rely on these built-in functions, it is
important to keep in mind what is happening behind the scenes. Thinking like a computer
programmer rather than a math student will greatly facilitate your transition to R.
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Two additional important tips here. First, you can use the round() command to
round a given value to a specified number of decimal places. Second, you can nest commands
inside of one another rather than produce a constant that you’ll only use one time (e.g., to
calculate the standard deviation we can create a constant that stores the variance and take
the square root thereof OR we can simply take the square root of the variance directly).

round(mean(dice),2)

## [1] 5.9

round(sqrt(var(dice)),2)

## [1] 2.43

We can also extract one or more observations from a vector. For instance, if we
wanted to know the value of the 1st through 3rd rolls, or just the value of the 7th roll:

dice <- c(2,2,3,4,4,5,5,5,5,5,6,6,7,7,7,7,8,9,10,11)

dice[1:3]

## [1] 2 2 3

dice[7]

## [1] 5

We’ll discuss more about extracting particular observations in a moment. Clearly,
though, conducting simple analyses in R is pretty straightfoward. Most of the commands
are semantic — that is, the command to obtain a particular statistic is intuitive. This is
generally the case, but can get confusing once we move into more advanced statistics. Using
comments in your R programming will therefore be vital to you and I both understanding
what you’re trying to do with a given piece of code. The pound sign (#) can be used to
create comments in the code, which can be helpful when you have to do complex things in
your code and you want to remind yourself (or me) what you’re trying to do with each bit
of code. They can be included at the end of a line of code or simply on their own. Just start
the line with a pound sign and then continue with code on the next line.

Now let’s work with two variables. Let’s try comparing two sets of dice rolls, by
looking at their means, variances, and the correlation between the two sets of rolls.

dice1 <- c(7,7,4,5,3,6,8,2,12,10)

dice2 <- c(8,4,7,7,7,7,6,6,3,4)

mean(dice1)

## [1] 6.4

sd(dice1)
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## [1] 3.098387

mean(dice2)

## [1] 5.9

sd(dice2)

## [1] 1.66333

cor(dice1,dice2)

## [1] -0.6812877

2.3 Creating matrices and data.frames

We could also represent these data a different way. Rather than having two vectors, we could
“column bind” them (using the cbind() command) into a matrix, which we can also call
whatever we want.

dice1 <- c(7,7,4,5,3,6,8,2,12,10)

dice2 <- c(8,4,7,7,7,7,6,6,3,4)

dice <- c(dice1,dice2)

set <- c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2)

dice.mat <- cbind(set,dice)

dice.mat

## set dice

## [1,] 1 7

## [2,] 1 7

## [3,] 1 4

## [4,] 1 5

## [5,] 1 3

## [6,] 1 6

## [7,] 1 8

## [8,] 1 2

## [9,] 1 12

## [10,] 1 10

## [11,] 2 8

## [12,] 2 4

## [13,] 2 7

## [14,] 2 7

## [15,] 2 7

## [16,] 2 7
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## [17,] 2 6

## [18,] 2 6

## [19,] 2 3

## [20,] 2 4

We can also use the corresponding rbind() to “row bind” two or more vectors,
which has the same effect as cbind(), but treats each vector as a row/observation. The
t() command transposes a matrix. If we apply this function to our original matrix (that
we constructed using cbind()), we will obtain the second matrix we constructed (using
rbind()).

rbind(set,dice)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

## set 1 1 1 1 1 1 1 1 1 1 2 2 2

## dice 7 7 4 5 3 6 8 2 12 10 8 4 7

## [,14] [,15] [,16] [,17] [,18] [,19] [,20]

## set 2 2 2 2 2 2 2

## dice 7 7 7 6 6 3 4

t(dice.mat)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

## set 1 1 1 1 1 1 1 1 1 1 2 2 2

## dice 7 7 4 5 3 6 8 2 12 10 8 4 7

## [,14] [,15] [,16] [,17] [,18] [,19] [,20]

## set 2 2 2 2 2 2 2

## dice 7 7 7 6 6 3 4

Here, we created our vectors from above, but then combined them into a single vector
using the c() command. We then created a separate vector called set into which we stored
the identifier for whether the observation came from our first or second set of rolls. We then
bound these two vectors together into a matrix called dice.mat, which has dimensions 20 x
2. Now this is starting to look like a traditional rectangular dataset where each observation
is represented as a row and each variable is a column. We can look at the dimensions of the
new matrix, including its number of columns and number of rows and use that information
to extract particular values (or sets of values) from the matrix. We can extract a particular
observation (e.g., observation 5), a particular variable (e.g., the second variable), or the
observation for a given variable (e.g., the value of the roll for our fifth roll) just as we did
with vectors, but now our syntax reflects that row and column position, as follows:

ncol(dice.mat)

## [1] 2

nrow(dice.mat)
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## [1] 20

dim(dice.mat) #obtain both dimensions

## [1] 20 2

dice.mat[5,]

## set dice

## 1 3

dice.mat[,2]

## [1] 7 7 4 5 3 6 8 2 12 10 8 4 7 7 7 7 6 6 3 4

dice.mat[5,2]

## dice

## 3

We could continue to bind vectors to this matrix. For example, we could bind a
vector to the matrix that identifies the color the dice we rolled. Here we’ll be dealing with a
vector of strings, which we cannot perform statistical or mathematical operations, but that
we often find in real world data.

color <- c("red","red","blue","yellow","blue","red","red",

"blue","yellow","blue","red","red","blue","yellow",

"blue","red","red","blue","yellow","blue")

dice.mat2 <- cbind(dice.mat,color)

dice.mat2

## set dice color

## [1,] "1" "7" "red"

## [2,] "1" "7" "red"

## [3,] "1" "4" "blue"

## [4,] "1" "5" "yellow"

## [5,] "1" "3" "blue"

## [6,] "1" "6" "red"

## [7,] "1" "8" "red"

## [8,] "1" "2" "blue"

## [9,] "1" "12" "yellow"

## [10,] "1" "10" "blue"

## [11,] "2" "8" "red"

## [12,] "2" "4" "red"

## [13,] "2" "7" "blue"
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## [14,] "2" "7" "yellow"

## [15,] "2" "7" "blue"

## [16,] "2" "7" "red"

## [17,] "2" "6" "red"

## [18,] "2" "6" "blue"

## [19,] "2" "3" "yellow"

## [20,] "2" "4" "blue"

We can also transform this matrix into a different type of R object called a data.frame.
Matrices and data.frames have some similar properties, but also differences that you will learn
over the course of this course. Importantly, most data that we read in from an outside file
(as opposed to typing in ourselves) will be in the form of a data.frame. But, we can also
transform our matrix into a data.frame. If you want to know whether something is a matrix
or a data.frame, you can also test it using an is.matrix() or is.data.frame() command.

data.frame <- as.data.frame(dice.mat2)

is.data.frame(data.frame)

## [1] TRUE

is.matrix(data.frame)

## [1] FALSE

is.data.frame(dice.mat2)

## [1] FALSE

is.matrix(dice.mat2)

## [1] TRUE

One of the key advantages of data.frames is that we can refer to columns of the
data.frame by their variable names, as opposed to their position number (as we have to
do with matrices). We can find these names using the names() command and isolate a
particular column of the matrix by using the dollar sign operator. Note that this produces
the same result as using the brackets to identify the particular column (as we did above with
our matrix).

names(data.frame)

## [1] "set" "dice" "color"

data.frame$color
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## [1] red red blue yellow blue red red blue yellow blue

## [11] red red blue yellow blue red red blue yellow blue

## Levels: blue red yellow

data.frame[,3]

## [1] red red blue yellow blue red red blue yellow blue

## [11] red red blue yellow blue red red blue yellow blue

## Levels: blue red yellow

We can also extract a column or row from a data.frame and turn it into a vector.
We might want to do this if we plan on transforming the data in some way and saving that
transformed data for later use. We could also add that new vector back into the data.frame
under a new name. The vector and column in the data.frame will have the same properties,
but changing one has no effect on the other. This aspect can sometimes get confusing,
especially once you start working with data that contains many variables. You can have a
column in a data.frame and a separate vector that have the same name. To work with the
vector simply use the name, to use the column in the data.frame, you have to use the $

operator.

df <- as.data.frame(dice.mat)

df$dice

## [1] 7 7 4 5 3 6 8 2 12 10 8 4 7 7 7 7 6 6 3 4

half <- df$dice+1

df$half <- half

summary(half)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.00 5.00 7.50 7.15 8.00 13.00

summary(df$half)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.00 5.00 7.50 7.15 8.00 13.00

half <- half+1

summary(half)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.00 6.00 8.50 8.15 9.00 14.00

summary(df$half)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.00 5.00 7.50 7.15 8.00 13.00
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Be careful here, because you can also accidentally change a vector by giving something
else the same name. For example, we can eliminate the vector entirely by assigning a constant
value to it or by giving it the missing value code NA.

half

## [1] 9 9 6 7 5 8 10 4 14 12 10 6 9 9 9 9 8 8 5 6

half <- 1

half

## [1] 1

half <- NA

half

## [1] NA

We can apply the same summary() and table() commands that we used on vectors to
matrices and data.frames. We can also use table() on two variables to construct crosstabs.

summary(df)

## set dice half

## Min. :1.0 Min. : 2.00 Min. : 3.00

## 1st Qu.:1.0 1st Qu.: 4.00 1st Qu.: 5.00

## Median :1.5 Median : 6.50 Median : 7.50

## Mean :1.5 Mean : 6.15 Mean : 7.15

## 3rd Qu.:2.0 3rd Qu.: 7.00 3rd Qu.: 8.00

## Max. :2.0 Max. :12.00 Max. :13.00

table(df$dice,df$set) #crosstab

##

## 1 2

## 2 1 0

## 3 1 1

## 4 1 2

## 5 1 0

## 6 1 2

## 7 2 4

## 8 1 1

## 10 1 0

## 12 1 0
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with(df,table(dice,set)) #an alternative method for getting crosstabs

## set

## dice 1 2

## 2 1 0

## 3 1 1

## 4 1 2

## 5 1 0

## 6 1 2

## 7 2 4

## 8 1 1

## 10 1 0

## 12 1 0

prop.table(table(df$dice,df$set)) #convert cell counts to proportions

##

## 1 2

## 2 0.05 0.00

## 3 0.05 0.05

## 4 0.05 0.10

## 5 0.05 0.00

## 6 0.05 0.10

## 7 0.10 0.20

## 8 0.05 0.05

## 10 0.05 0.00

## 12 0.05 0.00

Sometimes you want to know all the objects you have created. To see these, use the
ls() command.

ls()

## [1] "a" "b" "color" "data.frame" "deviations"

## [6] "df" "dice" "dice.mat" "dice.mat2" "dice1"

## [11] "dice2" "half" "len" "m" "s"

## [16] "set" "squares" "sumsquares" "v"

You can also use rm(list=ls(all=TRUE)) to clear all objects; this effectively starts
a new R instance because you will lose all of your work.

2.4 R Output

Just as it is helpful to save your R code in an outside file, it is also sometimes helpful to
send the output of R to an outside file so that you can retrieve it later. R provides the
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sink() command to allow you to put all of the output it produces into an outside .txt file
in addition to (or instead of) sending the output to the R console. This can be helpful when
you start performing a large number of analyses. (You need to enter the sink() command,
complete with all its arguments before conducting your analyses.)

3 R’s Built-in Datasets

One nice feature of R is that it comes with several built-in datasets, which allow you to
quickly play around with R and different functionality. You can see a list of datasets that
are available by typing data() on the console. A list of installed datasets will be available.
Those that are listed can be accessed just by referring to the dataset name.

Some commonly used datasets are iris and mtcars:

head(iris) # see first few observations in iris

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa

## 2 4.9 3.0 1.4 0.2 setosa

## 3 4.7 3.2 1.3 0.2 setosa

## 4 4.6 3.1 1.5 0.2 setosa

## 5 5.0 3.6 1.4 0.2 setosa

## 6 5.4 3.9 1.7 0.4 setosa

str(mtcars) # see the contents of mtcars

## 'data.frame': 32 obs. of 11 variables:

## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...

## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...

## $ disp: num 160 160 108 258 360 ...

## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...

## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...

## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...

## $ qsec: num 16.5 17 18.6 19.4 17 ...

## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...

## $ am : num 1 1 1 0 0 0 0 0 0 0 ...

## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...

## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...

4 Working with Real Data

Now that we’ve worked with some of the basic manipulations of data and the type of objects
that R understands (constants, vectors, matrices, and data.frames), we can proceed forward
by working with actual data. It is rare that we’ll have to enter our own data manually into R.
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Instead, we’ll likely have to import it from an outside file of various types. To this, we have
to start by telling R where to find the data. You can either do this visually by selecting File

> change dir, or you can use the setwd() command.2 This sets the working directory for
your current R session. You can change it later as needed, but you’ll need to set it each time
you work with R.

setwd("C:/Users/Thomas/Documents/Dropbox/Courses/")

You can check what your working directory is by using the corresponding getwd()
command.

After your working directory is set, you can read data into R. How you do this will
depend on the type of data file you are working with, but we’ll use a convenient package
called “rio” to do our data importing. R has a bunch of different data import functions
depending on which type of data you are using. rio has a function called import() that
figures out what kind of data you have and reads it in as appropriate. To use rio, you’ll need
to install the package.

4.1 Packages

Installing packages is straightforward. You can do this in many ways, but the easiest is from
within R. Type install.packages("rio") to install the rio package. R will then search the
CRAN website (https://cran.r-project.org) for the package and install it. You may be
prompted to specify a “repository mirror” from which to download the package. It really
doesn’t matter which one you choose.

On Windows, you may need to run R “as an administrator” in order for the package
to download and install correctly.

To actually use a package (once it is installed on your computer, using the above
instructions), you can call the package using the library() command in R.

library("rio")

The package is now ready to use. Now, let’s try reading in some data.

4.2 Reading in (and Writing Out) Data

Here’s an example dataset that includes six variables describing four patients who entered a
hospital for treatment.

patient,dob,entry,discharge,fee,sex
001,10/21/1946,12/12/2004,12/14/2004,8000,1
002,05/01/1980,07/08/2004,08/08/2004,12000,2
003,01/01/1960,01/01/2004,01/04/2004,9000,2

2The file path you use will depend on your operating system and the folder where you have saved the
data file on your computer. See the R help files for how to do this. You can access the help file by typing ?
setwd() into R. You can use that question mark syntax to get help on any R command.
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004,06/23/1998,11/11/2004,12/25/2004,15123,1

We can read this data into R from an outside “patient.csv” file and display the
resulting data.frame.

library("rio")

u <- "https://raw.githubusercontent.com/leeper/Rcourse/gh-pages/Data/patient.csv"

d <- import(u)

dim(d)

## [1] 4 6

d

## patient dob entry discharge fee sex

## 1 1 10/21/1946 12/12/2004 12/14/2004 8000 1

## 2 2 05/01/1980 07/08/2004 08/08/2004 12000 2

## 3 3 01/01/1960 01/01/2004 01/04/2004 9000 2

## 4 4 06/23/1998 11/11/2004 12/25/2004 15123 1

Note that this creates a data.frame called d that has a row for each patient and a
column for each variable.3 You can now proceed with analysis on this data.frame as you
would any other, just as we did with the data.frames we created above.

When we have created a data.frame (and potentially manipulated it in a number
of ways) and want to save our new creation, we can use the export(data, "data.csv")

command to store the data.frame as a .csv file in our working directory.

4.3 Data Manipulation and Subsetting

Often, we want to work with some smaller part of a dataset rather than the entire dataset —
for example, we may only be interested in looking at a subset of observations or looking only
at some variables. R has a number of functions for manipulating and subsetting data.frames
that can help us with these tasks. Recall that for data.frames, we can use the $ symbol
to identify specific variables or use the [,] brackets to index specific observations, specific
variables, or both. We will also make use of the ! symbol and the - symbol, which serve as
“not” commands. We’ll use the patient data we just read in to demonstrate the results of
using these commands in various combinations.

d$patient

## [1] 1 2 3 4

d[,1]

3You can call your data anything, but you need to store it as something. I always call my data.frames
data or some variant thereof for simplicity, but you can use anything you want.
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## [1] 1 2 3 4

d[, "patient"]

## [1] 1 2 3 4

d[1,]

## patient dob entry discharge fee sex

## 1 1 10/21/1946 12/12/2004 12/14/2004 8000 1

d[d$patient == 001,]

## patient dob entry discharge fee sex

## 1 1 10/21/1946 12/12/2004 12/14/2004 8000 1

d[d$sex == 2,]

## patient dob entry discharge fee sex

## 2 2 05/01/1980 07/08/2004 08/08/2004 12000 2

## 3 3 01/01/1960 01/01/2004 01/04/2004 9000 2

d[d$sex != 1,]

## patient dob entry discharge fee sex

## 2 2 05/01/1980 07/08/2004 08/08/2004 12000 2

## 3 3 01/01/1960 01/01/2004 01/04/2004 9000 2

d[d$sex == 2, "dob"]

## [1] "05/01/1980" "01/01/1960"

Note: If you want to further use a subset of a data.frame, it is necessary to store that subset
(of observations and/or variables) as a new object:

data_females <- d[d$sex==2,]

It is also possible to temporarily use a subset of data using the with() command:

with(d, mean(fee))

## [1] 11030.75

with(d[d$sex==1,], mean(fee))

## [1] 11561.5

with(d[d$sex==1,], mean(fee))

## [1] 11561.5
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Note that here, you don’t need to use the $ operator or [,] indexing brackets because the
with() command tells R which data.frame to use when we call the fee variable.

We can also achieve the above several other ways using other R functions. The
aggregate() function is particularly helpful when we want to extract a statistic for different
subsets of a dataset:

aggregate(fee ~ sex, data = d, FUN = mean)

## sex fee

## 1 1 11561.5

## 2 2 10500.0

4.3.1 Missing Data

Missing data, represented in R using NA, will inevitably create problems for you at some
point during this course. Whereas some statistical packages, like SPSS, SAS, and Stata,
will automatically drop missing values from many types of analysis (leaving the original
data.frame or matrix intact), R will often choke when you have missing values. This typically
causes confusing errors about the length of vectors or dimensions of matrices. It is also good
statistical practice to be fully aware of the amount and locations of missing data in your
dataset because the standard practice of dropping observations with missing values can often
create worse inferential problems (like selection bias, misleading results, etc.) than using a
number of other strategies for addressing missing data.

Perhaps most confusing is that mathematical operations involving missing values all
produce missing values, even if you might expect them to treat the NA as a 0:

missing <- NA

value1 <- 2

value2 <- 3

value1+value2+missing

## [1] NA

Something similar happens with vectors, matrices, and data.frames. Take, for in-
stance, a vector (v1) and let’s remove two values and see the effect on various functions:

v1 <- c(1,2,3,4,5,6,7,8,9,10)

length(v1)

## [1] 10

sum(v1)

## [1] 55
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mean(v1)

## [1] 5.5

v2 <- c(1,2,3,4,NA,6,7,8,9,NA)

length(v2)

## [1] 10

sum(v2)

## [1] NA

mean(v2)

## [1] NA

You can also identify which values in a vector, matrix, or data.frame are missing
using the logical function is.na(). You can also nest this command inside other commands.
The resulting vector of TRUE and FALSE logicals can also be treated mathematically, such as
using sum() to count the number of missing values in the vector.

is.na(v2)

## [1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE

sum(is.na(v2))

## [1] 2

We could simply remove the missing values for the purposes of performing the cal-
culation. For most functions, this can be accomplished by adding a na.rm=TRUE argument
within the function. Or, we could create a subset of the original data that omits the missing
values using the na.omit() function.

v3 <- na.omit(v2)

length(v3)

## [1] 8

sum(v3)

## [1] 40

mean(v3)

## [1] 5
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Using the na.omit() function changes the length of the original vector. So, while
cor(v1,v2) will give us a resulting correlation between our original two vectors of NA, if
we attempt to calculate the correlations of cor(v1,v3) or cor(v2,v3) R will produce an
incompatible dimensions error because v3 has a length of 8, while both v1 and v2 have
length 10. In practice, you may want to consider imputing missing values rather than simply
removing missing values to avoid these technical errors and larger inferential problems. That,
however, is the subject for another discussion.

5 Randomness

One of the very convenient sets of functionality in R is its ability to generate (pseudo-
)random numbers and to conduct sampling. Details about the different random number
generates can be found here: http://stat.ethz.ch/R-manual/R-devel/library/stats/

html/Distributions.html. Random numbers can be generated according to a number of
different distributions including (using the attendant command):

• Normal/Gaussian: rnorm()
• Chi-squared: rchisq()
• Student’s t: rt()
• Uniform: runif()

Each of these (and the other) distributions also have built-in functions for producing
density functions, quantiles, and p-values using commands of the form dnorm(), qnorm(),
and pnorm(), respectively. True random numbers and sequences can also be obtained using
the random package, which makes calls to the random number generates at http://www.

random.org instead of the built-in R pseudo-random number generators. Random integers
can be extracted using the random package or by rounding the output of one of the runif()-
type functions.

Besides generating random numbers, R also provides the ability to sample values from
a vector or observations from a data.frame using the sample() command. Sampling can be
conducted with or without replacement and involve samples of any size:

set.seed(1)

set <- c(1,2,3,4,5)

sample(set,5,replace=FALSE)

## [1] 2 5 4 3 1

sample(set,5,replace=TRUE)

## [1] 5 5 4 4 1

sample(set,10,replace=TRUE)

## [1] 2 1 4 2 4 3 4 5 2 4
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The set.seed(1) function makes our result reproducible by setting the “seed” of the
pseudo-random number generator so that we can get the same result each time we run this
code. Sampling commands could be used to conduct simulations, including bootstrapping
and permutation procedures, as well as Monte Carlo simulations (the latter, in combination
with the random number generation functions).

6 Plots

The real power of R is its sophisticated graphical functionality. R comes with a number of
built-in plotting commands; other plots can be produced using a variety of packages or by
writing your own code.

We’ll use an add-on package called “ggplot2” to do graphing because it provides a
very flexible interface for drawing lots of different types of plots. We’ll need to install it:
install.packages("ggplot2") before we can use it to draw a graph. As with any package,
we then need to load the package to use it:

library("ggplot2")

We’ll use one of R’s built-in datasets to produce some interesting plots. The most
important function in ggplot2 is ggplot(), which is what sets up a data.frame to let us plot
it. We can then add different plot elements using + operator to control what is displayed
and how the plot looks. A cheatsheet for ggplot2 is available here: https://www.rstudio.
com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf.

Basically, a ggplot2 plot is a dataset, plus some information about what variables
you want to plot, plus information about how you want to plot those variables. To obtain a
histogram, which is a graphical representation of the distribution of a variable, we just do:

ggplot(iris) + aes(x = Sepal.Length) + geom_histogram(binwidth = .25)
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The above code indicates that we are using the iris dataset that is built in to R, we
want to graph the Sepal.Length variable from those data, and we want a histogram so we
use the geom histogram. When we want a different kind of graph of the same data, we just
change the geom:

ggplot(iris) + aes(x = Sepal.Length) + geom_density()
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There are many, many geoms for single-variable plots (see the cheatsheet) and many,
many more for two or more variable situations. Here’s an example of a two-variable plot in
ggplot2:

ggplot(iris) + aes(x = Sepal.Length, y = Sepal.Width) + geom_point()
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The neat feature of ggplot2 is that we can layer multiple graphical elements on top
of one another. So, in the above graph, we can easily add a smoothed line showing the
relationship between the two variables more clearly:

ggplot(iris) + aes(x = Sepal.Length, y = Sepal.Width) + geom_point() + geom_smooth()
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To display categorical data, we would use different geoms. Here we display boxplots
showing the distribution of Sepal.Length across the different species in the iris dataset:

ggplot(iris) + aes(x = Species, y = Sepal.Length) + geom_boxplot()
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6.1 Saving Plots

Once you have created a plot, you will likely want to save it outside of R (for example, to
include in a problem set). The easiest way to do this is by writing a ggsave() line into your
code:

ggplot(iris) + aes(x = Species, y = Sepal.Length) + geom_boxplot()

ggsave("myplot.png")

This saves your plot as a PNG file in your working directory.

7 Basic Programming Tools: Logics, etc.

As I’ve stated above, R is a programming language. Thus, it will be helpful to understand
some basic programming to help you move beyond the relatively simple tasks we’ve learned
about so far. I will focus on four areas:

1. Logicals
2. Functions
3. Apply
4. Loops

7.1 Logicals

Logicals allow you to test the equivalence of different R objects in any typical mathematical
fashion:

• Equal to: == 4

• Greater than: >
• Less than: <
• Greater than or equal to: >=
• Less than or equal to: <=
• Not: !

So, we can use these to produce TRUE or FALSE results from R, which is helpful when building
complex programs. Generally it is not terribly helpful to test a simple logical like 2>1, so
instead these logical statements are often used as conditions for performing further operations
inside an if() statement.

7.1.1 IF-THEN, ELSE

Logicals on their own, are not that helpful. Rather, they are helpful for building complex
programs with subroutines that are only run under particular conditions. We could, for
instance, set the value of one variable depending on the value of another, or only conduct
an operation on an object if it is non-missing. While some programming languages require

4Note the double-plus (==), not to be confused with the single-plus (=), which is used to store a value.
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you to type “then” in order to actually execute the second part of an if-statement, R does
not require this. Take a look at the following simple examples:

x <- 2

if (x==1) q <- "FAIL"

if (x==2) q <- "SUCCESS"

q

## [1] "SUCCESS"

if (is.na(x)) q <- "FAIL"

if (!is.na(x)) q <- "SUCCESS"

q

## [1] "SUCCESS"

These logicals can also be combined with the AND & or OR } operators to produce
logicals that meet more than one criterion.

x <- 2

q <- NA

if (!is.na(x) & x>2) q <- "SUCCESS"

q

## [1] NA

if (!is.na(x) | x>2) q <- "SUCCESS"

q

## [1] "SUCCESS"

Here we can see q is not set to equal SUCCESS under the first statement because while
x is non-missing, x is not greater than 2. Under the second statement, however, where we
use the OR operator q is set to SUCCCESS because x is non-missing, so it does not matter
what the value of x is — only one of the two logicals in parentheses needs to be true.

While we can string an infinitely long string of if() statements in a row, sometimes
we do not need R to evaluate all of the statements — for example, we may want to stop
evaluating the if() statements once one of them is satisfied. We can use the else if ()

and else commands in these instances.

a <- 4

if (a==1) x="Stopped at 1" else

if (a==2) x="Stopped at 2" else

if (a==3) x="Stopped at 3" else

if (a==4) x="Stopped at 4" else

if (a==5) x="Stopped at 5" else
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if (a==6) x="Stopped at 6 or larger"

x

## [1] "Stopped at 4"

You can see here that even though we had two lines of code after the:

if (a==4) x <- "Stopped at 4" else

command, those lines were not evaluated because a was set to 4. Thus, we don’t have to
spend computing time and power to produce a logical TRUE or FALSE for each if-statement,
only for the relevant if-statement.

7.2 Functions

While R and its supplemental packages provide an enormous amount of functionality, you
sometimes feel compelled to write additional functionality to serve a particular need. In
this case, you’ll need to use the function() command. Let’s say, for instance, that we had
calculated daily high temperatures for a week in Fahrenheit, but needed them in Celsius.
We could perform the conversion manually on each score:

temp1.f <- 65

temp1.c <- ((65-35)*5)/9

temp1.c

## [1] 16.66667

Or we write a function to conduct the conversion without having to retype the math
for each score:

temps <- c(65,68,72,76,69,78,68)

ftoc <- function(f) {
c <- ((f-35)*5)/9

print(c)

}
ftoc(temps[1])

## [1] 16.66667

7.2.1 Apply

This saves us a bit of time because it simplifies what we have to type, but it’s still not
very efficient. If we wanted to speed up the process even further, we could use R’s apply()
functions to automatically perform the function on every element in our temps vector.
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celsius <- sapply(temps,FUN=ftoc)

## [1] 16.66667

## [1] 18.33333

## [1] 20.55556

## [1] 22.77778

## [1] 18.88889

## [1] 23.88889

## [1] 18.33333

celsius

## [1] 16.66667 18.33333 20.55556 22.77778 18.88889 23.88889 18.33333

We can also use apply() built-in functions to matrices, vectors, and data.frames.
This can be helpful if you want to calculate summary statistics for a number of different
subgroups of observations within your dataset. Apply can also be used to do a lot of other
things (including some cool and interesting things), but I won’t go into the details here.

7.3 Loops

The last important piece of R programming that you should know about is looping. Like
apply(), loops allow you to perform an otherwise tedious task a number of times on the
same or different data, similar to using apply(). Loops and apply() are what really sets
R apart from its competitors like SPSS, SAS, and Stata. There are several different types
of loops that can be used, which are describe in detail at http://cran.r-project.org/

doc/manuals/R-lang.html#Looping. The simplest loop can be used to perform the same
temperature conversion we used above.

celsius <- numeric(length(temps))

for (i in 1:length(temps)) {
celsius[i] <- ((temps[i]-35)*5)/9

}
celsius

## [1] 16.66667 18.33333 20.55556 22.77778 18.88889 23.88889 18.33333

Here, we tell R that we want to conduct a task for i number of times, specified by 1 to
the length of our temps vector. For each iteration of the loop, we take the ith element of the
temps vector, perform the temperature conversion calculation and store the resulting value
in the ith element of the celsius vector. When the loop completes, R displays nothing, so
we have to call the celsius vector. If we didn’t need to store each converted value, we could
also use the print() command to simply display the resulting calculations like so:
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for (i in 1:length(temps)) {
print(((temps[i]-35)*5)/9)

}

## [1] 16.66667

## [1] 18.33333

## [1] 20.55556

## [1] 22.77778

## [1] 18.88889

## [1] 23.88889

## [1] 18.33333

The print() function will be helpful if you run very large or complicated loops.
But now we’ve seen multiple ways to apply functions to objects. Which should we

use in which situation? Given that we have nearly unlimited computing power and time,
the distinctions between these methods are fairly small. apply() functions tend to be faster
than loops, but that only matters if the task you’re performing is very complicated. Loops
are more versatile because you can perform multiple tasks within a single iteration of a loop,
as well as nest loops inside one another. For example, if you needed to perform a task on
each element of an i-by-j matrix, you could nest a loop indexed by j within a loop indexed
by i, or vice versa. The final choice of how to program depends on the needs of the particular
task you’re aiming to complete. Often there many, many ways to accomplish the same task,
which makes R uniquely versatile among statistical packages.

8 Conclusion

So now you’ve learned the basic information you need to know to use R for this class.
Hopefully this tutorial has helped you be less intimidated by and frustrated with the language
and this course as a whole. Best of luck and let me know if you have questions!
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